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Abstract—To improve visual tracking, a large number of
papers study more powerful features, or better cue fusion
mechanisms, adaptation or contextual models, for instance. A
complementary approach consists in improving the track man-
agement, that is, deciding when to add a target or stop its
tracking, for example in case of failure. This is an essential
component for effective multi-object tracking applications, and
is often not trivial. Deciding to stop a track or not is a
compromise between avoiding erroneous early stopping while
tracking is ne, and erroneous continuation of tracking when
there is an actual failure. This decision process, very rarely
addressed in the literature, is dif cult due to, for example, object
detector de ciencies or observation models that are insuf cient
to describe the full variability of tracked objects and deliver
reliable likelihood (tracking) information. This paper addresses

the track management issue and presents a real-time, online

multi-face tracking algorithm that effectively deals with the
above dif culties. The tracking itself is formulated in a multi-
object state-space Bayesian Itering framework solved with
Markov Chain Monte Carlo. Within this framework, an explicit
probabilistic ltering step decides when to add or remove a target
from the tracker, where decisions rely on multiple cues such

as face detections, likelihood measures, long term observations,

and track state characteristics. The method has been applied
to three challenging datasets of more than 9 hours in total,
and demonstrate a signi cant performance increase compared to
more traditional approaches (MCMC, RJ-MCMC) only relying
on head detections and likelihoods for track management.

I. INTRODUCTION
A. Motivation

Fig. 1. Example video frames from the considered applicatiateset 1 and
2 (top), and 3 (bottom). Faces may be dif cult to detect, andlugions can
occur requiring an effective mechanism to remove and reliséidracks.

select interesting shots to show to the remote sites. Onteeof t
challenges for face tracking here is that the participaotaat
always look into the camera, and their attention might be on
the touch table or on another person in the room.

The most straightforward approach for solving the face
tracking problem is to employ a face detector (€.g. [1]). How
ever, despite much progress in recent years on multi-viee fa
detection, these methods are mostly employed in scenarios
where people predominantly look towards the camera. As
we demonstrate in our results, this is not suf cient for more
complex scenarios, where faces are missed ar@dnd 40%
of the time due to less common head poses. Unfortunately,
the dif cult head postures can last for relatively long pels
of time (up to one minute in some of our videos). This means

The detection and tracking of faces in real-time is of utmo#hat face detection algorithms have to be complemented by
interest in many computer vision applications from differe robust tracking approaches; not only to interpolate ditect
domains, e.g. video-conferencing, Human-Robotic or Humakesults or Iter out spurious detection, as is often assurbet

Computer interfaces or in the analysis of social interactio
For instancegffective group-to-groupommunication gains

also to allow head localisation over extended periods oétim
Numerous multiple faces tracking methods have been pro-

increasing attention in modern video-conferencing applicposed (e.g.[12],[13], 4], [[5], [[6]), mainly focusing on new

tions, and requires ef cient and robust algorithms to deiee
the position of a varying number of faces at each point

features, new multi-cue fusion mechanisms, better dyramic
ior adaptive models for instande [7]1.)[8]. [9]._110], and risu

time, which is the topic of ongoing research like in the peoje are demonstrated mostly ehortsequences [7]. [8]1[9]/ [10].
“Together Anywhere, Together Anytime” (TA2). There, sev- However, very few of them address track initialisation and
eral persons sit in front of a camera (Fig. 1), communicatermination, especially in terms of performance evaluatid
with each other and with one or several remote sites, aféte detector is often used to initialise new tracks, but how
perform some shared activity on a touch-table in front ofrthe cope with its uncertain output? Aigh con dence threshold
Face tracking and other cues are used by a virtual operafgdy lead to missing an early track initialisation. Convifse
component to understand the communication situations awdh a low threshold false tracks are likely to occur.
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Track terminationcan be even more dif cult. How do we
know at each point in time if a tracker is operating correztly
This is an important issue in practise, especially since an
incorrect failure detection can lead to losing a person track
for a long time until the detector nds the face again.

This paper explicitly addresses these issues and proposes a
effective solution to handle them.



B. Related Work particles. However, they only addressed single, neatdion
o . _ ) face tracking, in high resolution videos and only evaluated
Principled methods exist to integrate track creation angeihag on 30 to 60-second video clips. Finally, other works

termingtion within the trackir_lg framework, for examplese_g. [22], [23], [24]) tackle the problem of long-terperson
Reversible-Jump Markov Chain Monte Carlo (RI-MCMCj5cying by analysing the statistics of features from short
[11], [12]. But to be effective, they require appropriat®tBil 501 (tracklets), and by proposing methods to effegtivel
scene likelihood models involving a xed number of obegqciate them. These algorithms are different from ours as
servations (independent from the number of objects), afighy process the dataff-line, i.e. the observations at each
these are dif cult to bgild in multi—face tracking appligabs. ,.int in time are known in advance, and they mainly deal
Experimental results in Sectién VI show that an RI-MCMGgis, tracking the position of théull human bodyas opposed to

based face trackef [11] performs worse than the proposgd faces. Another approach for multiple pedestrian fragk
approach, mainly because it relies only on the likelihood 95 4s5ociates smaller tracklet-line and in a statistical

decide on track creation and deletion, and not on other CUimpling framework but no principled mechanism for startin
like tracker location uncertainty or long term statistics. and ending tracks is proposed.

Kalal et al. [13] present an interesting approach for failure
detection in visual object tracking that is based on the idea o
that a correctly tracked target can be trackeatkwardsin C- Contributions
time. Unfortunately, the backward tracking greatly ine@s  In this paper, we propose a novel multi-face tracking algo-
the overall computational complexity (by a factor linear imithm. It relies on a principled Bayesian Iter solved with a
the backward depth). In a particle lter tracking framewprkMCMC sampling scheme that handles object interactions. The
another solution is to directly model a failure state as @oam main contributions of the paper are the following:
variable within the probabilistic model _[14]. However, ghi an explicit probabilistic ltering framework to decide
increases the complexity of the model and thus the infetence \yhen to add or remove an object from the tracker based

and it is difcult in practise to model the distribution of on the output of a detector, long-term image features, and
a failure state or failure parameters. Closer to our work, features from the tracker itself (e.g. state variance):

Dockstaderet al [15] proposed to detect failure states in e oflong-termimage observations to cope effectively
articulated human body tracking using a Hidden Markov \yith missing or uncertain face detections;

Model (HMM). However, their method differs signicantly  expjoiting static observations (based on current image ob-
from ours: they only use one type of observation (the state  seryations) as well as dynamic ones (temporal evolution
covariance estimate) which in our case proves to be inseifici of certain features), for tracking failure assessment;

for assessing tracking failure; their observation are tjsed to a thorough performance evaluation on more tBdrours

use a standard discrete multinomial likelihood model, wher of videos involving2 to 5 persons per view, with around
our method learns these likelihoods in a discriminativéifars, 22000 annotations, showing the superiority of our ap-
and their HMM structure (number of states, connections) proach as compared to a traditional RJ-MCMC approach
is speci cally designed for their articulated body tracdin to handle variable number of object tracks;

application. further comparison of a single object tracker version of

In applications that are similar to ours the problem of  our algorithm including failure detection with several
deciding when to stop tracking a face is usually solved in  state-of-the-art single object trackers [7], [S[.]10].

a recursive manner. This means, assessing tracking fa'IWE extensively evaluate the impact of different factors of

is often left to the (sudden) drop of objective or Iikelihooqhe proposed method for real-world applications and draw

measures which are not easy to control in practise [16].. [1¢l,nciysions about the level of importance of these factors.

In many scenarios of interest, the camera is xed, and Thjs paper extends our prior work [26] in several aspects:
due to the application and the room con guration, peoplgtroduction of new features to assess the tracking statase
in front of the camera tend to behave similarly over longhorough description of the algorithms and of the parameter
periods qf time. However, mo:_;t of the_ existing face trackin@aming, more in depth performance analysis with illustea
methods ignore this long-term information, as they comeg@t regyits, more extensive experiments and comparison veita-st
on video clips that are often not longer than a minute. Or §;_the-art single- and multi-object tracking algorithms.
they use long-term information, it is mainly for construcfi Section[) describes our multi-face MCMC particle Iter
stable appearance models of tracked objects [18], [19], emework. SectiofiTll presents our approach for track imea
by working at different temporal scales [20]. Similarlynse 5, fajlure detection. SectidilV describes how the alparit
methods [[9], [[21] train an (object-specic) detector Omin yeeps track of person identities. Sectih V introduces our

during tracking, to make it more robust to short-term angynerimental protocol, while SectidmlVI present our result
long-term appearance changes. However this increases Ifﬂ?ally in Sectio VIl we draw our conclusions.
computational complexity, because a separate model has to b

built for each person, and each such detector has to be dpplie
on the input image. Recently, Mikanett al. [16] introduced
the Memory-based Particle Filter where a history of pagesta We tackle the problem of multi-face tracking in a recursive
(and appearances |17]) is maintained and used to sample igayesian framework. Assuming we have the observafibns

Il. MULTI-FACE TRACKING WITH PARTICLE FILTER



from time 1 to t, we want to estimate the posterior probabilityntersection area as a fraction of the average area of the two

distribution over the stat&, at timet: bounding boxesB; andB; de ned by X;; andXj;, where

1 a(:) denotes the area operator. The factgr controls the

pP(XjY 14) = c p(Y jXt) strength of the interaction prior (set $in our experiments).
Z

P(XXe 1)p(Xe 1jY 1 1)dXe 15 (1) ¢, Observation Likelihood

Xt 1
. L . As a trade-off between robustness and computational com-
whereC is a normalisation constant. As closed-form solution

are usually not available in practise, this estimation iplewn anity’ we employ a relatively simple but effective obseiion
y P ! P likelihood for tracking. Another model could be used as well

mented using a particle lter with a Markov Chain Monte Given our scenario, we assume that the face observations

Carlo (MCMC) sampling schemé_ [11]. The main elements (v are conditionall L d d . .

the model are described below. it . . 'y independent given the state, Iead!ng to
an observation likelihood de ned as the product of the Vesib
individual faces likelihoods:

Y
P(Y ¢jX¢) = PCY it J Xt ) 4)
ki =

A. State space

We use a multi-object state space formulation, with our
global state dened asX; = (Xi;kt), where X; =
fXitGiz1-m andky = fki gi=1.m . The variableX;; de- Note that we did not include a partial (or full) overlap model
notes the state of fade which comprises the position, speedin the likelihood component, nor any other contextual tiagk
scale and eccentricity (i.e. the ratio between height anmtihyi techniques[[27]. Strong overlaps are prevented expliditty
of the face bounding box. Eadty; denotes the status of facethe interaction term (Ed.]3) in the dynamics. This approach
i at timet, i.e. kiy = 1 if the face is visible at time t, and is appropriate for our scenarios (teleconference, HCIJHRI
kit =0 otherwise. FinallyM denotes the maximum numberwhere continuous partial face occlusions happen only yarel
of faces visible at a current time step. More often, faces are occluded by other body parts that are
not followed by the tracker, like a person's hand, or another
person's body crossing in front. Even a joint likelihood rebd
o would not handle these cases. Thus, for longer full occhssio

The overall state dynamics is de ned as: our strategy is to have the algorithm remove the track of the

POX4iXe 1)/ po(Xijke) Y PXitiXie 1) (2) occluded face, gnd restart it afterwa_lr(_js as soon as Eassible

The observation model for a fadeis based onR = 6

HSV colour histograms( i1 = [h(r; Xit)] (r = 1::R), that

that is the product of an interaction prigy and of the e computed on the face region described by the tate
dynamics of each individual face that is visible at iteratioThey are compared to histogram mode{s(r), to de ne the

t like in tracking methods for a xed number of targetsyhservation likelihood for a tracked face as follows:
[11]. Note that this is actually feasible since the creation

and deletion of_ targets are d_e, ned outside the ltering SteB(Y wiXi) ! exp( o » Dz[hi;t (r):h(r; Xix)]  Do);

(see next section). The position and speed components of i

the visible faces are described by a mixture of a rst-order (5)
auto-regressive modgl, and a uniform distributiorp,, i.e., where D denotes the Euclidean distallce = 20, and

if x denotes a position and speed component vector, we halg: is a constant offset de ning the distance at which the
P(Xit jXit 1) = P a(XitiXit 1)+ )pu(XitjXix 1), with likelihood in Eq. [$) givesl:0. More precisely, we divided
Pa(Xit iXit 1) = N(AX; 1;0; ), andpy(Xitjxit 1)) = ¢ the face into three horizontal bands and in each band com-
with ¢ being a constant allowing for small “jumps” com-puted two normalised histograms with two different levels o
ing from face detection proposals (see Ef. 8). A rst orquantisation. Speci cally, we used the scheme propose@]in [
der model with steady-state is used for the scale and &dhich decouples coloured pixels (put i, N, HS bins)
centricity parameters. Iix denotes one such componentfrom grey-scale pixelsNy separate bins) and applied it with
(x¢ SS)= N(a(x; 1 SS);0; ss), where SS denotes two different quantisation leveld\, = 8 and Ny = 4 bins

the steady-state value. The steady-state values for sodle ger channel. This choice of semi-global multi-level histgs
eccentricity are updated only when a detected face is assdeisults from a compromise between speed, robustness to
ated with the face track and at a much slower pace compaggpearance variations across people as well as head pose

B. State Dynamics

i2f 1:M gjkit =1

to the frame-to-frame dynamics. variations for individuals, and a well conditioned likedibd,
The interaction priopg is de ned as i.e. peaky enough to accept a well identi ed optimum, buthwit
_ X a smooth basin of attraction towards this optimum, adapied t
Po(Xtjkt) = Xig; X ) I exp( 4 9(Xiit s X it ) low sampling strategies.
fiij g2P fij g2P 3) The histogram models of one face are initialised when a

n%\{v target is added to the tracker. Furthermore, to improve

preventing targets to become too close to each other. The B , ) L .
. . . . . .. thé tracker's robustness to improper initialisation andrafing
P consists of all possible pairs of objects that are visible.
. 2 i\ B; .
The penalty functiong(Xi:;Xjt) = % is the 1A Bhattacharyya distance could have been used as well.



lighting conditions, they are updated whenever a detected f C 1
is associated with the given face track (see below):

hy (=@ hy 1)+ hi(r) 8r; (6)

wherehg, denotes the histograms from the detected face re-
gion, and is the update factor (set @2 in our experiments).

Fig. 2. The HMM used at each image position for tracker targeation.
The variablec; indicates a face centred at a particular image position. The

D. Tracking algorithm probability of ¢; is estimated recursively using the observatiofg::ofy _
At each time instant, the tracking algorithm proceeds in
two main stages: rst, recursively estimate the states ef th [1l. TARGET CREATION AND REMOVAL

currently visible faces relying on the model described &ov The way objects are added and removed from the tracker
and solved using a MCMC sampling scheme. Second, make, key feature of the proposed algorithm. In our applicatio
a decision on adding a new face or on deleting currentienario, the goal is to avoid false alarms as much as pessibl
tracked faces. This second stage is described in SeCfion {this means, the tracker should be able to detect as quickly as
The MCMC sampling scheme allows for ef cient samplingyossible if there is a tracking failure. On the other hand, it
in this high-dimensional state space of interacting targatd should not stop tracking when there is no failure since it may
follows the method described in [11]. take a long time until the face is detected again.
LetN be the total number of particles aid; the number  \we propose to use two different Hidden Markov Models
of “burn-in” particles. At each tracking iteration, we do:  (HMM) for that purpose, as described in the following sec-
1) initialise the MCMC sampler at timewith the sample tions. One is used for object creation and the other for aobjec
X‘ﬁo) obtained by randomly selecting a particle from theemoval. Each of them receives different types of obsermati
setfX® ;s=(Ny+1) :::Ngattimet landsample A face detector (for both frontal and prole views) is
the state of every visible targétusing the dynamics called every 10 frames (i.e. around twice per second, as our
p(X it jXit 1) (deleted targets are ignored); algorithm is able to process around 20-23 frames/s in real-
2) sample iterativelyN particles from the posterior distri- time). The HMMs are updated only at these instants, but
bution of [1) using the Metropolis-Hastings algorithm:rely on observations computed on all frames since the last
a) sample a new particln“to from a proposal distri- update. According to our experi_ments, _applying the det<_acto
bution 0. (s) : ) to every video frame d|q not signi cantly improve the trqn@
a(X: JXt ") (described below);
b) compute the acceptance ratio: performance and c9n3|derably slowed down the algorlth_m. _
| Before the creation and removal step, each detection is
. 0 1) g0 @jx9) @ associated to a track provided the following conditionsdhol
"0 Y 1) g0 5% ) 1) Fhe detection is not gssomated with any other target,
' ' (s+1) ' 2) it has the smallest distance to the tracked target,
c) accept the particle (i.e. de ne; = X“to) with 3) the distance between detection and target is smaller than
probability a. Otherwise, add the old particle (i.e. two times the average width of their bounding boxes,
setx; " = )ct(s)) 4) the two bounding boxes overlap.

After time stept, the particle sef X (® o)y, 1 represents Although a more generic way would be to use training data
an estimation of the posteri@(X%jY 1.t). to learn the association rules and parameters as donelin [28]
The proposal functiory( ) allows for selecting good can- for instance, the above conditions work well for our data in

didates for the particle set. Efciency in MCMC samplingthe large majority of cases.

. . 0 - i
precisely, a new sample is selected by lettkig’ = X”t(s), and remqval. Note that pa_lt_urglly,_only un-associated dietes
fre considered for the initialisation of a new target.

randomly select a face amongst the visible ones, and the
sample the proposed staxé?t of facei from:
h A. Creation
axX%qixy= @ ) p(X & jX i(;f) ) When initialising a new target we have two objectives: rst,
i minimise erroneous initialisations due to false detejand
+ p (X2 jX?) 8) second, initialise correct targets as early as possible.

For deciding when to add new targets to the face tracker,
that is a mixture of the state dynamics (ensuring temponak propose a simple HMM that estimates the probability of
smoothness) and the output of a face detector (avoidingdraca hidden, discrete variable (i;j ) indicating at each image
drift) controlled by the factor ,. whereX ¢ denotes the state position (i;j ) if there is a face or not at this position. FIg. 2
of the closest detection coming from a face detector [1] anltustrates the model. In the following, we drop thej}

a=min

N Nyp;

r

sampled around their initial position. 0., =[05;:::; O] the sequence of observations from time



1 to time t. Assuming the transition matrix is de ned as:
p(cjc. 1) =1 iff ¢ = ¢ 1 and O otherwise, the posterior
probability of the states; can be recursively estimated as:

Ofjc; = = 5j0%.
b(c = §j0%,) = P p(Ofict = s)p(et 1 = §jOF; 4)

Cie, = = c ’
s0 p(Otth - SO) p(Ct 1= SojOl:t 1) Fig. 3. Example image (left) with an illustration of the copeading tracking
Ve ) memory (right) during tracking. Qualitatively speaking,ckacreation will
c: _ c - . be faster (almost immediate) when a new face detection is oiervthe
p(Otth) - p(ot;i th) : (10) “white” regions whereas repetitive detection will be nezde initiate a track
i=1 in a “black” region. Similarly, when an object track moves tadX regions,

1) Track creation: for each detected face that is nofts failure probability will become higher. See text for dita
associated with any current face target, we decide whether

track is created or not. To this end,(ifj ) denotes the centre V\:ﬁere t?eihpara}mete_;& = ( IIZ ), 4der|10tte_t_the| ofﬁet a?rd tthe
position of the face detection, the ratio: slope of the sigmoid (see Figl 4). Intuitively, the offse

denotes the threshold value beyond which an observafign

where

reisj ) = pa(ii)=1j08: (i) (11) is more likely to occur within the bounding box of a detected
p(c(i;j) =0jO5.(i;])) face than in a non-face area, whereas the slope controls how
is computed. Iffé(i;j ) > 1, then a new track is initialised at fast the likelihood change is around this threshold.
(i ). Otherwise, no track is created from the given detection.3) Parameter learning: the parameters | =( |; |) of

2) Observations and likelihood models: we propose to the sigmoid functions in equations]|16 dnd 17 have been ttaine

use two different types of observatior;,, the output of the of ine with a set of N observation®;. These observations
face detector and°,, a long-term “memory” of the states (i.e.are tracking memory values that have been collected froin rea

positions) of tracked faceX . tracking sequences and are composel dfpositive instances
The rst observation is de ned as follows. At time and measured at image positions of correct face detections, and
image position(i;j ) we set: N negative instances measured at image positions of false
8 detections. To train the model, we maximise the posterior

< 1 if (i;j) is covered by one of the probability of the labels for the given observations

o=, bounding boxes of the detected faces, (12)
0 otherwise. N
The likeli e =argmax p(c= Gijo;) ; (18)
e likelihood of the rst observation is then de ned as -
1=
C — H — — . C —_ H —_ —_ .
p(o;; =0ja =0)=1  fa; p(og; =1ja =0)= fa where C; 2 fO0;1g denotes the class label dfi, and

p(og; = 0jc = 1) = md; p(oi1=1jcc =1)=1 md; p(c= gjo;) / p(ojc= ;) is given by Eq[Ib anf17,
(13) and we assumed an equal prior on both classes. In practise,
wherefa is the empirical false alarm rate anttl the missed We nd a good approximation of by doing a grid search

detection rate of the detector. According our detectionites in @ reasonable range over the parameter spacEigure[]
from several datasets, we dat = 0:0001andmd = 0:4. shows an example of a pair of learnt sigmoid functions and the

The second observatiasf , is based on the history of pastrespective decision boundary (in this case for target rafjov
image positions of tracked faces, which we will call “traugi  If Observations are greater than the ratio Bede=g > 1,
memory” in the following. At each iteration of the trackemgt that means a face is more likely to be present. Otherwise, it
tracking memory is updated slowly according to the mean & more likely that no face is present.
the current state distributioX:

Of,=(1  )of 1o+ I¢; (14) B. Removal
where =0:001and During tracking, we want to assess at each point in time

8 if the algorithm is still correctly following a face or if itds
< 1 if (i;j) is covered by one of the lost track. The algorithm can lose track, for example, when
e (i)) = . bounding boxes described BY+; (15) it gets distracted by a similar background region or when a
O otherwise. person leaves the scene. More concretely, the objective is t

Fig. @ shows an example of the tracking memory durini@terrupt the tracking as soon as possible if a failure ogcur
a run of the face tracker. Given the current value ofif a and to continue tracking otherwise, even when a face has not

region is covered during one minute the observatignswill been detected and associated with the track for a long time.

reach a value 00:5 approximately (starting from O).Y In a way similar tp target initiali_satio_n, we propose to use
Intuitively, we would like to initialise targets more quigk for each tracked facean HMM estimating at each time step

in regions where a person has been “seen” previously. Thiithe hidden status variable; indicating correct tracking
we modelp(ct ,jc) with a pair of sigmoid functions: (kix =1) or tracking failure kix = 0). We will drop the face
’ 1 indexi in the following. Fig[5 illustrates the proposed model.

. 1
Pofziq =1;)= —arctan( (o, 1))+ 5  (16)
c c A Let us denote byO; = [0}4;:::;0}y o] the set ofN;
p(ogzjc =05 ) =1 p(o;jc = 1) ; (A7) observations at each time stepand byO',, = [O};:::;0!]
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Fig. 4. Example of an observation likelihood model (hefg described
by a pair of sigmoid functions with learnt parameterss f; g. The

parameters of the positive sigmoid function (solid red curkiaye been
optimised to model best the positive (blue solid boxes) andhtieg (purple
dotted boxes) training observations (here illustrated isyograms) according
to Eq.[I8. The offset (here atx = 0:29), where the two sigmoid
paired curves cross, de nes a soft decision boundary. Maezigely, in

this example, an observation above this threshold favougetaemoval, as
p(oijk = 1) > p(ojk = 0), and vice versa. The parametercontrols

the slope of the functions, and thus the strength and (uajogy of the

decision. In this case, the slope is not very steep, re gctive fact that small
observations can be observed even when track is not lost.

ke 1

Fig. 5. The HMM for target removal, used for each tracked fate variable
kt indicates if a given face is still tracked correctly or if didiae occurred. The
probability ofk; is estimated recursively using the observatiop§::o{;N .

the sequence of observations from timheto time t. The
posterior probability ok; can be recursively estimated as:

ko 1p(o{jkt)p(ktjkt0 1) Pk 1jOL 1)

p(OfjkD) p(ktojkto 1) p(k? 0% 1)’
(19)

(20)

p(kijO1,) = P

kPk? 4

Vr
where p(Ofjk) = p(0f; jki) :

i=1
The state transition probabilitp(k:jk; 1) is set to 0:999

. X . 1
for staying in the same state a0l for changing state, @MPlitudea; is set to= (or

0.5
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Fig. 6. Trained likelihood functionp(objk: = 1) to p(ofjky = 1). The
soft decision boundary for a given observation type is theke where the

curve crosses the ling = 0:5. A steeper curve qualitatively means that the

corresponding observation is more discriminative for theigiec to remove
a target or not (e.g. for the likelihood and variance dropeotetions). Note
that although the tracking memory slope is not as steep, itthetess plays
an important role since spatially, a tracker can quickly mowenfa position
where the observation is greater than 0.58 (i.e. above thésondary), that
is, a position in a region where tracks have been observeghtlgcto an
image positions where the observation is very close to 0.

indications on theemporal evolutionand variability of
certain observations.

Except for one observation, all likelihoods are modelled by

pairs of sigmoid functions:
. 1
Poyijke =17)= & arctan(i(o; i)+ 5i  (22)
p(o; jke =0;) =1 p(og jke =1); (23)

where, as for target creation observations (sedfion ll|1tAg
1 for some observation types),

assuming a frame rate of approximately 20 frames per secéHifl the parameters; = ( i; i), i.e. the slope and the offset
as in our experiments. of the sigmoid, have been trained of ine with a set of postiv

1) Track ending: for each tracked face and at each tim@nd negative observations as described at the end of Section
step, we compute the ratio: [MT=A] The only diffgrenpe is that t'he trainipg observatoare
o(k = 1jOL.) collected at each time instant during tracking runs and nit o
K= ‘_7}‘ : (21) when faces are detected. Figlire 6 shows the plots of thetrain
p(ky =0jO%) functions fork = 1. Below, we describe each observation we
If rf < 1 for a given face, then the tracking is considered tbave used and comment on the learnt parameters.
have failed and the target is removed. Static observationsthe rst static observation for a given
2) Observations and likelihood models: we propose target is based on the output of the face detector:

= i i ro—
tor use N’r = 7 different types of observation®; = ; 1 if a detection is associated with the targ é
[0.;:::;0;;] extracted from the image as well as the state ofo;. ; = ) F 4)
the tracker itself. We can divide them into two categories: 0 otherwise.

four static observationsd. ;;:::; 0}.,) that provide indi- The likelihoodp(c; ;jk:) is de ned in the same way as fof ;

cations on thestate of the trackerand in Eq.[I3 (that isp(af.; = ujke = 1) = p(of; = ujc; = 1)).



The second observatia) , is the tracking memory value at T
the respective target positiqim; n) in the image, as de ned s ! ]
in the previous section (Eg.114 ahd] 15): ar '

0., = Of(m;n): (25) '2
This ensures that the tracking of a face is more likely to be 15|
maintained if a face stays at its previous position (with ghhi 1t
tracking memory value). And conversely, the target shoeld b os|
removed with a higher probability when it moves to image 0

regions that were never occupied by a face before. From the Cor e R e me®
slope of the sigmoid function correspondingp(ojk; = 1)  Fig. 7. lllustration of the Page-Hinckley test to detectugitrdecreases of

; ; ; ; ignal. The solid red line shows the temporal evolution ofissignal, the
shown in FIgEB’ we can see that these observations prOVId%usrép%e dotted line shows the computed result of the Pagekitindest that

reIativer.discriminan-t informa:tion regardirlg. ~ we use as observation to detect abrupt signal drops. At time4 a drop
The third observation type is the tracker observation ilikelof the signal occurs and is correctly detected (peak of jpudplted line).

hood computed at the mean state valug of targeti: _ _ _
leading tom,; = M,; and thugh,; =0. FigurdT illustrates

0tz = P(YitiXix); (26)  the Page-Hinckley test with some example datat At14 a

as de ned by EqCB. The likelihoofl(d. 5jk;) is again de ned Signal drop occurs leading to a high valuerbf .

by a pair of sigmoids (EqC22 anE]ZB). Figuie 6 shows Similarly, for detecting an abrupticreaseof ! we compute:
that these observations are highly discriminant with respe U = U + 1 o+ ji 31

to k;, in the sense that a tracker likelihood value below LU teo (N 2 (31)
approximately 0.3 is characteristic for a tracking failure U =min(uy 1;Us ) (32)

The fourth observation relates to the variance of the target
g O = Uy Uy (33)

ltering distribution. More precisely, let 7, and 7, be
the variances of the horizontal and vertical position ofjéar whereU,. o = 0. In its original form, the Page-Hinckley test
stateX it . Then we de ne produces a binary output. It is oneri,;; or 0, is above a

oL, = max( 2§ 2y ): 7) prede ned threshold and zero otherwise. Here, we propose to

; Ltx »o Lty directly use the value#,; or 0y, as observations.

A higher variance of the state distribution means a higher Thus, using equatioris #8433, we de ne:
uncertainty (and vice versa), and the track should be stbppe _ _ _ )
more quickly. The rather at function in Fid.]6 shows that 05 = Mo ;3 O = Mo 14 Of7 = Uopsat  (34)
these observations are less discriminant on their own. Observationsd 5 indicate drops of the likelihoog(Y (jX+)
Dynamic observationsthe three remaining observations aref a given face (se¢ 26). Andf ¢, of, indicate abrupt
based on the temporal variation of different features. Thejcreases and increases of the variance of the state ulismib
rely on the detection of rapid increases or decreases owerned in[27. The likelihood functiong(o}. sjk:); p(of gik:).
time of particle variance and observation likelihood. Tasth gnd p(o}. ;jk;) are de ned by pairs of sigmoids (Ef.122.123)
end, we assume that the values of these features are normaity parameters trained of ine. The resulting sigmoids e
distributed during tracking, and we use the Page-Hinckleyd o ¢ are relatively at, thus not so discriminant on their
test [29] to detect jumps or drops of these (one-dimensjonalvn (see FigJ6). The observatiop, that is the rapid increase
Gaussian) “signals” with respect to their means. This tejgt position variance, is more discriminant.
works as follows: let! ; be the signal for which we want
to detect an abrupiecrease Then, the following values are IV. PERSON IDENTIEICATION
computed at each iteratidn

The algorithm further tries to keep track of the identitids o
i different persons and associates each track with a person, i
— (28) i ) e .
for each new target track it decides if it belongs to a presipu
My =max(my 1, My ) (29) seen person or if it is an new person. In this work, we built
M = m Mo - (30) person models which are longer-term descriptions of person

It it It . . . .

’ ' ' appearance acquired from observations during the tracking
whereM,. ¢ =0, ], is a constant that determines the tolerategrocess. Here, a simple colour-based model, similar_to [20]
change of valué , and! ; is the running average df. My  has been used. More speci cally, the modg| of a person
accumulates the values going above the expected lower boynd composed of two colour histograms: one describing the
¢ ji). The valuem,; memorises the maximum valueface region,hjf;t , and one for the shirth?, . The structure of
of this cumulative sum, and the difference between the#ige histograms is similar to the one used for the observation
last two valuesrhyy (Eg.[30) is an indication of an abruptlikelihood in the tracking algorithm{II-C), i.e. two diffent
decrease of the value. On the other hand, if ; decreases quantisation levels and decoupled colour and grey-scaie bi
only gradually, then the running averade will follow this If a target is added to the tracker and there is no stored
decrease. The cumulative suvh; will constantly increase, person model that is un-associated, a new model is ingilis

My =My 1+ e (M



immediately and associated to the target. Otherwise, tte fahe overall complexity of the videos is higher because ofemor
and shirt histogramsh{.t, h ) of the new targeti are dif cult lighting conditions (e.g. cross shadow betweenope

computed recursively ovar successive frames and stored imple), it contains more people including children, so thensce
P, . After this period, we calculate the likelihood of eachs more dynamic. Also, occlusions occur more frequentlye Th

stored modeP;; given an unidenti ed candidatg;, : videos of dataset 3 are rather challenging for face trackisg
. g ) people sit close to each otBeralso, the lighting condition
P(Pjt jP; ) = exp (ws D=[hyy s hig 1+ wsD7[h shi 1) 5 and image quality is worse in the second video of this set.

(35) Finally, the number of visible persons is varying throughou
where D is the Euclidean distance, and the weights athe videos due to people leaving temporarily the scene.
w; =1;ws = 2. A given persori is then identi ed by simply
determining the modePp,« with the maximum likelihood: ~ B. Annotation
(36 Almost 22 000 videos frames have been annotated. The time
spacing between two annotated video framgwaries from
0:04s to 12s according to the dynamics of the scene. Thatiis,

0:1 here). If not, a new person model is created and add@dsma”er for periods with large movement of the persons and

to the stored list. All associated person models are uptmted/ Ice versa. In total, therg are more _than. 60000 head position
each iteration with a small factor® = 0:01 The candidate 21notations, together with an identi er, .. a number tsat

models are updated with factor = 0:1 assigned to each person. The position and size of a head is
o described by a bounding box.

m = argmax p(Pj; Py, ) ;
]

provided thatp(Pm; jP; ) is above a threshold (we chose

V. EXPERIMENTAL PROTOCOL

C. Evaluation protocol
A. Databases

Since the paper contribution is mainly about track failure

Approach. Many tracking algorithms are tested on shoréetection (and.track creation), one could for instance ime&g
sequences (maximum one to two minutés) [7), [8], [9]. [P label all fa_|Iures of a trackmg algorithm and evaluate
where the creation/removal problem is not addressed affether the failure detection algorithm performs well ot.no
therefore their test sequences are not appropriate for GifWever, since each tracker may fail at different momerats, f
purpose. Further, these sequences are often speci caI@esz'fferent tracks, dependln_g on history (for instance if ackr
up (e.g. moving a puppet or a coke can attached with a witdfS removed or not has impact on th(_e current model due for
[7], [L0] and do not correspond to any application scenarioinStance to the colour model adaptation), or on parameters,
In this paper, we adopt another approach, and grouﬁHCh an approgch is not feaS|b.Ie in practise. We thgs eyaluat
our experiments on a real use-case, with long recording4" @Pproach in terms of tracking performance, which is our
involving natural individual and interactive behaviouemd Nal task of interest. To this end, the principal performanc
without people caring about the camera or the tracking tagR€asures are precision and recall (over time) of the face
Although the data may not look particularly challenging, iracking .result, as we want to track faces as long as possible
is indeed full of cases that can affect tracking due to tH& obtain a high recall) and stop tracking as soon as a
variety of situations, of poses, of pose changes and dy,samp‘@ulure occurs (to increase the precision). In the follog_vm
quick body shifts, partial occlusions by hands (when peopfé® d_escrlbe the used performance measures, the different
touch their face or their hair, drink or eat), full occlusior!9orithms that we compared, and their parameters.
by others, or combinations of the above. In additiong 1) Performance measures:in a given video frame, rst,
sequences can be challenging for algorithm using adaptatfY€ry tracked face (or face detection) is associated with a
components (like our colour histogram models). Indeed, tiggound trgth fgce fro_m the annotation. T_he associationsrule
dif culty with adaptation does not always lie in the mos2'® described in sectnﬁ]lll. A face detectlgn or trackepatt
dynamic situations (where the objects can be distinguishi§gcounted as correct if the F-measure with the ground truth
from the background), but also in other quiet and apparentfydreater tha:1. The F-measure is de ned as:
simple moments, where partial drift in the representatian c F- 2a(B;i \ Bj)
actually occur and ultimately lead to failure. a(Bi) + a(Bj) ’

Data. Experiments have been conducted on more than 9 howfgere B; is the ground truth rectangle (i.e. a bounding box

of video data that have been annotated extensively. We ugédhe entire head) an8; is the rectangle output from face

three sets of videos recorded in different environments (s@etection or tracking. In other words, the F-measure is the

Fig.[). According to our scenario, recorded people have be@tio between the intersection and the average area of the tw

sitting at a table and Imed by a central camera (roughly Zectangles.

3 metres away). They have been playing online games withWe further de ne the recall and false positive rate for an

people in a remote location using a laptop or touch-scresn. gntire video as: P

a result, they are often looking downwards and their faces ar iG:2 i di iG:2 i

often not detected by a standard detedtor [1]. R=Pg— FP=P5—: (38
Figure[1 shows example images from the three datasets. In i=2 =2

dataset 1, the lighting conditions are overall good. Ingktt@,  2Dataset 3 is available at http://www.idiap.ch/datasBt/ta

(37)


http://www.idiap.ch/dataset/ta2.

whereG is the number of annotated framels,the proportion MCMC/HMM1+2c: the proposed MCMC tracker with
of correctly tracked/detected faces in framé.e. those for HMMs for target creation and removal using all the
which F > 0:1), f; is the number of false positive outputs observationsstatic and dynamic

divided by the number of ground truth objects in frame@nd  3) parameters: all the trackers use 500 particles with
i is the time difference between framendi 1. a burn-in proportion of25% For ef ciency, the videos are
We also measure the total number of interruptions for @ocessed at a resolution 840 360 pixels, and the original
given dataset. An interruption is de ned as the event wh@fame rate has been changed to 12.5 fps. The face detector
a track is falsely ended, i.e. the face (ground truth) id stihreshold has been varied from 2 to 4 to obtain the different
present but the respective target is removed from the trackgrecision-recall curves. The value of the other paramétass
Finally, to measure the accuracy of identi cation as deyeen mentioned directly in the text. In practise, the atbori
scribed sectiof IV, we computed thubject purity [30] for  gid not exhibit a high sensitivity to changing their setting
each ground truth object:
P S g VI. RESULTS
OP = 43'6— ; (39) o
iz i A. Qualitative results.
where G is again the number of annotated frames, @nd Our rst experiment illustrates the proposed track creatio
is the proportion of correctly identi ed faces in frameas and removal components. Figure 8 shows some snapshots of
explained in the following. The identity assigned to a gmunthe results. The different colours of the rectangles repres
truth object at timé is given by the algorithm described indifferent identities. In frame 1152 (Fig. 8[d)), the persemated
[Vland more speci cally Eq[C36. Once the tracking has beemn the left starts to be occluded for the rst time. After sele
run on a complete video, we can compute the above rate fyrtial and then full occlusion moments, the object is gall
associating to each object the face track that has the longesnoved at time 1284. The track is re-initialised in framé4,4
overlap with the object (according to the F-measure). shortly after the face re-appears, and again removed inefram
) 1684 (Fig[8(N)) after another longer occlusion.
2) Algorithms: to evaluate our approach, we compared our Figure[® shows for this video segment (of Fig. 8) the evo-
results against a standard face detector [1] including #180dg iion of the track removal observation likelihoogéol, jk)
for frontal and pro le views, Wlth two Competitive baseline and posterior probabi”tp(kt - 110{) of keeping the tILIEiCk of
(RJ-MCMC and MCMC baseline), and also conducted e¥gg |eft sitting person. The graph gives some intuition ow ho
periments by switching off different parts of the model tqne nroposed algorithm works and why. Absence of detections
evaluate the benet of the different approach components.q tracking memory or likelihood value as well as rapid
More precisely, the algorithms are as follows: changes in variance are important cues for detecting patent
RJ-MCMC a tracker based on the Reversible-Jumpacking failures. However, it is the fusion over time of the
Monte Carlo Markov Chain algorithm_[11][ [12]. In contributions of all cues that allows to make reliable decis.
addition to theUpdatemove, which follows the MCMC  The tracking results in Fig_10 illustrate another situatio
description in sectiof ID, four other moves have beegngd the role of the interaction prigry (Eq.[3) that prevents
implemented to handle the creation and removal of tagtrong overlap between trackers. In this case, one face is
gets:Add, Delete, StayandLeave For more details, we peing occluded by another one. Both models compete for the
refer the reader td [11]. [12]. observations, but the occluded head being visually lesgylik
MCMC baseline:an MCMC-based tracker, i.e. the als kept on the side thanks to the spatial prior, which deveily
gorithm described in sectidnl Il. For target creation angenerates a strong drop in likelihood. Full occlusion issthu
removal, the following strategy has been used: every (Upnplicitly handled by our track creation/removal algorith
associated) face detection is initialised as a new targgfopping the occluded, i.e. less con dent, track, and tiaiRi

We also tried to initialise a target only afteseveral jsing it later on when obtaining a new detection.
successive detections but this didn't have a large impact

on the precision. A tracked target was removed if it had
no associated detections for 100 frames (8 seconds) oP
the likelihood dropped belo@0% of its running average. In the second set of experiments, we measure the per-
MCMC/HMM1: the proposed MCMC tracker with theformance of the proposed tracking algorithm while varying
HMM for target creation (see sectiodn _IlItA). Targetdifferent tracker components. In Fig.]11, we plot the recall
removal has been done as for the baseline. and false positive rates for the tested algorithms with gingr
MCMC/HMM1+2a: the proposed MCMC tracker with face detector threshold (from 2 to 4). The performance using
HMMs for target creation and removal (see sectiornsoth creation and removal HMMs is higher than for algorithm
[M=Aland [I-B). Observationso;; 0, and o}, have been MCMC/HMML1, only using the HMM for target creation and
used, that is the ones based on face detections, on thlying on face detections and likelihood drops to assess
likelihood, and on the state distribution variance. tracking failure. Comparing MCMC/HMM1+2b (orange lines)
MCMC/HMM1+2b: like “MCMC/HMM1+2a” but using with MCMC/HMM1+2a (dotted magenta lines) shows that
the additional observations,, i.e. the tracking memory. adding the tracking memory observatiof clearly increases
That means this algorithm uses all tstaticobservations. the recall. Finally, algorithm MCMC/HMM1+2c¢ (black solid

i Quantitative multi-object tracking results
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(e) frame 1274 ' (f) frame 1488 ' (g) frame 1616 ' (h) frame 1684
Fig. 8. Tracking result on a video with several occlusiong tacking failures (left sitting person). Different coted rectangles represent different identities.

e

Fig. 10. Snapshots of a short video showing one face beinlyaed by another one. The girl's track (blue rectangle) isextly removed by detecting a
failure and reinitialised automatically afterwards. Ndtattidentities, represented by rectangles of differenbwd, are kept consistent.

lines) that incorporates the dynamic observations detgcti

Fig. 8 a) D) ¢ a) e) U a) n) . ) i i i ) .
is 1F ‘ ‘ ‘ 3 jump/drop in likelihood or position variance results in thugr
‘gg §§ E ‘ ‘ _/\_/\ ] performance improvement in most of the cases. Comparing
° lo0g  po00; | 1200 1300 1400 3500 1600 1700 the results for the three datasets, one can notice that ¢ad re
§T§ §§ C ] j of dataset 2 is lower than for the other sets, probably due to
g8 o2l RS : ‘ ‘ ] alower recall of the face detector (see Figl 12).
1000 1100 1200 1300 1400 1500 1600 1700 .
3 o8 — We further compared our method (MCMC/HMM1+2c) with
£ §§ N AL N | ‘ ]  other tracking approaches: MCMC baseline and RJ-MCMC
= 2000 oo | 1200 (1300 1400  jso0 160 1700 [LT]. The results are shown in Flg]12, together with theltssu
38 0L ]  of the face detector, as a reference.
8 o, ‘ ‘ ‘ : ‘ ‘ Clearly, for low detection thresholds the false positiv@)F
1000 1100 1200 1300 1400 3500 1600 1700 . . .
5 o8 ‘ : ‘ ‘ ‘ rate of the face detector is much too high for many practical
28 o6 A — - applications. For higher thresholds, the detector misskes a
= 0.4 ‘ ‘ ‘ ‘ ! ‘

“lood 1100, | 1200 1300 100  diso0  1s0p 1700  Of faces. We can see that for an acceptable FP rai& 1) the

08 ‘ ‘ ‘ recall is rather low (betwee@:4 and 0:7). The dashed green
lines show the results of the baseline tracker. Althouglodsd
061009 1100; | 1200 1300 1400 1500 1600 1700 ot yse the HMMs for target creation and removal it already
04 s } ; ; achieves a good performance.

variance
drop
o
o
T

variance
jump

026 1o | 100 1m0 1400 ise0  1e00 1700 The performance of the proposed algorithm is clearly
82 iF — 1 1 - better than with the RJ-MCMC and the MCMC baseline
838 Mb TN ‘ 5 ~—>3  systems. Since the tracking algorithm for the MCMC baseline
=7 1000 1100 1200 130 1400 1500 1600 1700 s the same as for the proposed method, the performance

improvement is clearly due to the target creation and reiova
Fig. 9.  Evolution of track removal likelihoodp(of; jki = 1) and the mechanisms. The precision of RJ-MCMC is rather low be-

post_erior probabilityp(kt = 1_jO{) of correct tracking f_or the person sitting cquse the creation and removal of targets is only based on
left in the short sequence illustrated in Fig. 8. Verticabluad lines a) to

h) correspond to the frames in Fld. 8. A likelihood value abOue (green the observation likelihood, as in_[11]. Note that, unliker ou_
dashed line) favours keeping the track, and vice-versa.tiétek is actually approach, RJ-MCMC adds and removes targets at the particle

removed if the nal posterior probability (last row) is beldW5. Initially, in  |ayg]. Although this is a principled statistical framewadhat
(a), tracking is correct. At (b), the progressive occlusiesults in a decrease del h s h belief h b
of likelihood, but the face becomes visible again (c). In (e stronger models at each point in time the current beliet on the number

occlusion pushes the track off the recent tracked face aea@aptured by Of visible targets, it is more dif cult to capture longerste

the low tracking memory, and results again in a low tracketlitie®d, which dynamics and features from the state distribution itselfe T
jointly almost triggers the failure detection. It is ultimBtehe continuous . .

absence of face detections and the sudden variance jump thaellow to MCMC baseline (green dashed I|nes), on the other hand,
correctly identify the failure and remove the track. The keacis correctly adds and removes targets based on more ef cient, longer-ter
reinitialised around frame 1415. Then, a transient occlusiocurs (f) and gpservations namely the likelihood with respect to its mea
later a new occlusion generating a low tracking memory andili@ed as ' . .

well as a rapid state variance drop (usually due to only fertigd@as having and the face detector output. Thus, its performance is thette

a high weight) leading to the correct stop of the track at tiri841 than the one of RJ-MCMC.
Table[l compares the algorithms for a given face detector
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0 005 01 015 02 clothes with similar colours.

false positive rate
Fig. 11. False positive rate and recall for Datasets 1 to Bgusifferent
observation types C. Comparison with state-of-the-art single-object traske

threshold. The proposed method outperforms the otherdlfor a We also compared our approach with other state-of-the-
three datasets. Also, the total number of tracker inteiwnpt art algorithms that rely on different appearance modelling
is decreased. This means that the proposed method maintaingtegies. We focus on the longer-term tracking behawdur
face tracks longer, even when the face detector provides these algorithms because previous works [8], [7], [9].][10]
output for extended periods of time or when the likelihood i81] do mainly evaluations on videos shorter than one minute
temporarily decreasing. Since available codes are working only for single object
Figure[I3 shows some tracking results of a video frofiacking, we redesigned our experiments accordingly fe th
dataset 3 containing 3-4 persons. The people change tlagir stask: for a given person, all trackers were initialised naiyu
from time to time, occlusions occur, and head poses can ibehe rst frame. Then, each time a failure was identi edgth
challenging, as illustrated in the example. tracker was stopped and re-initialised using the rst diédec
Finally, the average object purity (OP) over all thre§enerated by the face detector [1] for the tracked persdiedca

datasets is also higher with the proposed method, althou‘;g‘f‘?ry 10 frames as in all experiments) after the failureainist
the identi cation algorithm is the same for all three conghr 1eSted algorithms were:

methods. We presume that this is because targets are dgneral FragTrack “Fragment-based tracking['[[8]. According to
tracked for a longer time with fewer interruptions. So, in a the method, a failure is detected if the objective function
video, there are fewer re-identi cations and thus potemties- score is below a certain threshold (varied in different runs
identi cations. The main errors are due to people wearing between0:02 and0:2).
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(a) frame 20000 (b) frame 20038 (c) frame 52408 (d) frame 114870

(e) frame 114948 (f) frame 114962 (g) frame 115148 (h) frame 115302

Fig. 13. Snapshots of multiple-object tracking result oradat 3. For each frame: different coloured rectangles reptefifferent identities. Purple rectangles
show the output of the face detect@op: MCMC baseline,bottom: proposed approach. With the baseline method, some targenhitietised from false

detectiong I3[ ), and tracks are not maintained wie¢ections are missirjg_13[c). The proposed approach avdisks ifditialisations and maintains
good tracks longer. | f) tracking failures are deteaadier, and i I3(f), the lost target is re-initialisedliear(second person from the left).
data face RJ-MCMC | MCMC MCMC 1 T
set detection baseline | HMM1+2c e
recall 55:0% 89:5% 85:2% 93:9% os | ’ :x” e ,
1 FP rate 2:00% 20:75% 4:29% 1:45% / x
# interrupt. 861 395 112 k
average OP 41:35% 68:69% | 68:98% 06 ]
recall 39:9% 75:7% 69:9% 76:0% g
2 FP rate 0:41% 3:27% 1:21% | 0:77% T oeal |
# interrupt. 2062 1004 567
average OP 49:09% 66:61% | 69:60%
recall 48:3% 77:2% 75:1% | 93:7% 02 f FragTrack ——- |
3 FP rate 0:33% 18:2% 1:06% | 1:19% omen I
# interrupt. 1299 455 166 o ‘ ‘ ,___ proposed (MCMC/HMM1+2¢) —=—
average OP 27:96% 34:23% | 57:46% 0 005 01 015 02 025 03 035 04
false positive rate
TABLE |

Fig. 14. Comparison with several state-of-the art trackilggrthms.
PERFORMANCE COMPARISON ON THE THREE DATASET§WITH A FIXED 9 P w

FACE DETECTOR THRESHOLD Olzl).
get ltered out as well, so the advantage from our target

creation algorithm is not evident here, and the difference in
OAB: “Online Adaboost” [7]. Here, the tracking con-performance of our approach can be mostly attributed to the
dence measure proposed by the authors for failuk@rgetremoval(failure detection) algorithm.
detection is the number of (internal) detections, that we Figyre [I2 shows the resulting curves. Our algorithm
thresholded with values betweénand 30. achieves the best performance in terms of precision andl,reca
OMCLP: “Online Multi-Class LPBoost”[[10]. As with even if the tested state-of-the-art trackers have a more ad-
OAB, a threshold betweef and 10 on the number of yanced appearance model than the proposed approach. Figure

detections was used as failure indication. [3 illustrates the results on one of the videos (only a sub-
As for our approach, we simply used our algorithniegion of the whole video is shown). For each tracker, the
(MCMC/HMM1+2c) allowing oneface track at most. best threshold for detecting lost tracks is selected acugrd

Data: we used 20 video clips of 5 minutes each (a randdfh the results shown in Fig. 1.4.
subset of our full dataset). As the videos contain severalOverall, these results show that (i) even these trackers fai
persons, we ltered out detections of the persons that ate rom our seemingly easy scenario, due to pose changes, quick
supposed to be tracked. As a side effect, most false detsctishifts, partial occlusions by hands, etc; and (ii) the goasbf
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when to start and stop tracking is pertinent as well for thetgad to false track initialisations if they occur consishen

trackers and becomes especially relevant with longer gidecand repeatedly, or which can also cause late removal of lost
tracks. The discriminative training of a classi er jointlgiking

D. Discussion into account the different observations could also helphia t

We h h that i q I of I ¢ regard. Finally, even if we are able to accurately and quickl
€ have shown fnat precision and recall ol long-terfjaiq o failures, the result is still dependent on the timakies

tracking is considerably _mcreased by using the pmpos?cgobtainanew face detection to reinitialise the trackifigus,
approach for target creation and removal. Our tracker oyl

. ) . aving less tracking failures and better multi-view detecis
perfo.rms also_ state-of-thg—art single-object and muifeot obviously a way to increase the performance.
tracking algorithms, despite the fact that some of them use
more discriminative (multi-modal) appearance modelse&mj Computational time. The proposed algorithm runs in real-
the robustness of our tracking algorithm could probably bane, i.e. around20-23 frames/s (including video decoding)
improved using these appearance models (provided they watka resolution o640 360 pixels on an Intel PC at 3.16
in real time for multiple faces). Also, existing algorithmsuld GHz. Around9% of the processing is spent on frame decoding
largely bene t from our track creation and removal framelyor and conversion27% on face detection (although run only
when applied on a longer time scale. once every 10 processed frame39% on tracker likelihood
Other scenarios. Recently, we successfully tested our algomputatlon,g% on the MCMC sampling steps{% on

gorithm on video sequences acquired by a humanoid rog%{get creation (because it is pixel-based but this could be

Nao in a Human-Robot Interaction scenario involving selve slgni cantly reduced by processing grid-points only), daes

r
0,
people interacting with the robot. In this setting, the mide%anlmon target removal.

also contains fast camera motion due to the robot rotating

his head to address different persons. Although this is an VIl. CONCLUSIONS

adverse situation (since people’s position is changingldyi ) . ) )

in the image domain) for the memory tracking cue, successfulWe presented an on-line multi-face tracking algorithm that

tracking and track management is achieved. effectively deals with situations where detections are m@ar
Furthermore, in this scenario, the track removal compone#icertain. To achieve this, long-term observations from th

was exploited with another tracking algorithm that doestjoi Image and the tracker itself are collected and processed in a

head position and pose tracking using a different appeara¢incipled way using two separate HMMs, deciding on when

model (multi-level HOG [32]). The single main modi cation 0 @dd andremovea target to the tracker.

was to change and relearn the decision threshold df We evaluated our approach on more than 9 hours of videos

the sigmoid associated with the new tracker likelihogd With extensive annotation, and the results show that the pro

using a small training dataset. Results showed that that #@sed algorithm increases the performance consideraltty wi

parameters learnt from real data were not so sensitive fRSpect to state-of-the-art tracking methods not using-lon
different environments. term observations and HMMs.

Other failure informative cues. We currently use seven
observations for failure detection. Others could be used as REFERENCES
well, but may not always lead to better results. For instance i and 4 obiect d d
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(a) frame 500 (b) frame 4500 (c) frame 6630 (d) frame 7498 (e) frame 7500

Fig. 15. Snapshots of a single-object tracking result. FedgTrack, green: OAB, blue: OMCLP, yellow: proposed appto Tracks of OAB and OMCLP
are maintained too long despite being lost (b)-(d); Fragdramoves the target “too early”, (e).

J. Yao and J.-M. Odobez, “Multi-camera multi-person 3Raptracking
with MCMC in surveillance scenarios,” ifturopean Conference on
Computer Vision, workshop on Multi Camera and Multi-modahS
sor Fusion Algorithms and Applications (ECCV-M2SFARjarseille,
France, Oct. 2008.

Z. Kalal, K. Mikolajczyk, and J. Matas, “Forward-backvd error:
Automatic detection of tracking failures,” iRroc. of ICPR Istanbul,
Turkey, 2010.

C. Plagemann, D. Fox, and W. Burgard, “Ef cient failuretdction on
mobile robots using particle lters with gaussian processpasals,” in
Proceedings of the Twentieth International Joint Confeeean Atrti cial
Intelligence (IJCAI) Hyderabad, India, 2007.

S. L. Dockstader, N. S. Imennov, and A. M. Tekalp, “Markoased
failure prediction for human motion analysis,” Rroc. of CVPRvol. 2,
Nice, France, 2003, pp. 1283-1288.

D. Mikami, K. Otsuka, and J. Yamato, “Memory-based pagtitier for
face pose tracking robust under complex dynamicsPiioc. of CVPR
2009, pp. 999-1006.

——, “Memory-based particle Iter for tracking objects it large
variation in pose and appearance,”Rmoc. of ECCV vol. 3, 2010, pp.
215-228.

A. D. Jepson, J. D. Fleet, and T. F. El-Margaghi, “Robuosiine
appearance models for visual trackinFEE Trans. on PAMIvol. 25,
pp. 1296-1311, 2003.

C. Zhang and Y. Rui, “Robust visual tracking via pixebssi cation

and integration,” inProc. of ICPR Hong Kong, Sep. 2006, pp. 37-42.

D. T., G. Gordon, H. M., and J. Wood Il, “Integrated pers tracking
using stereo, color, and pattern detectiddCV, pp. 175-185, 2000.
Z. Kalal, J. Matas, and K. Mikolajczyk, “Online learmjrof robust object
detectors during unstable tracking,” Proc. of ICCV(CV workshop)
2009, pp. 1417-1424.

Y. Li, C. Huang, and R. Nevatia, “Learning to associdigbridBoosted

multiple object tracking,” inProc. of CVPR Jun. 2009, pp. 2953-2960.

B. Song, T.-Y. Jeng, E. Staudt, and A. K. Roy-Chowdht#ystochastic
graph evolution framework for robust multi-target tracking, Proc. of
ECCV, vol. 1, 2010, pp. 605-619.

C.-H. Kuo and R. Nevatia, “How does person identity igmition help
multi-person tracking?” irProc. of CVPR 2011, pp. 1217-1224.

B. Benfold and |. Reid, “Stable multi-target tracking iral-time
surveillance video,” inProc. of CVPR Jun. 2011, pp. 3457-3464.

S. Duffner and J.-M. Odobez, “Exploiting long-term ebgations for
track creation and deletion in online multi-face trackingi’ IEEE
Conference on Automatic Face and Gesture Recognitiar. 2011.
M. Yang, Y. Wu, and G. Hua, “Context-aware visual tragkl' IEEE
Trans. on PAMJ vol. 31, pp. 1195-1209, 2009.

M. Richardson and P. Domingos, “Markov logic networkbfachine
Learning vol. 62, pp. 107-136, 2006.

M. Basseville, “Detecting changes in signals and syste- a survey,”
Automatica vol. 24, pp. 309-326, 1988.

K. Smith, D. Gatica-Perez, J. Odobez, and S. Ba, “Evalgamulti-

Stefan Duffner received a Bachelor's degree in
Computer Science from the University of Applied
Sciences Konstanz, Germany in 2002 and a Mas-
ter's degree in Applied Computer Science from
the University of Freiburg, Germany in 2004. He
performed his dissertation research at Orange Labs
in Rennes, France, on face image analysis with
statistical machine learning methods, and in 2008,
he obtained a Ph.D. degree in Computer Science
from the University of Freiburg. He then worked
for 4 years as a post-doctoral researcher at the Idiap
Research Institute in Martigny, Switzerland, in the eld admputer vision
and mainly face tracking. As of today, Stefan Duffner is areisge professor
in the IMAGINE team of the LIRIS research lab at the Nationadtitute of
Applied Sciences (INSA) of Lyon, France.

Jean-Marc Odobezreceived an engineering degree
from the Ecole Nationale Suprieure de Tlcommu-
nications de Bretagne (ENSTBr), Brest, France, in
1990, and the PhD degree in signal processing from
Rennes University, France, in 1994. He performed
his dissertation research at IRISA/INRIA Rennes
on dynamic scene analysis using statistical models.
He then spent one year as a postdoctoral fellow at
the GRASP Laboratory, University of Pennsylvania,
working on visually guided robotic navigation prob-
lems. From 1996 until September 2001, he was an
associate professor in computer science at the Universit g@indylLe Mans,
France. He is now a senior researcher at both the IDIAP Refséastitute and
EPFL, Switzerland, where he directs the Human Activity asialyeam. His
main areas of research are computer vision and machine leasathgiques
applied to multimedia content analysis as well as trackinghamdan activity
and behavior recognition. He is the author or coauthor of ntbes 100
papers in international journals and conferences in hisl. éle is or was
the principle investigator of 10 European and Swiss prejede holds two
patents on video motion analysis. He is the cofounder of thissSiilewel
SA company active in the intelligent capture, indexing, anebWasting of

object tracking,” inlEEE Conference on Computer Vision and Patterrmultimedia conference and seminar events. He is a member of tig, difd

Recognition - Workshop on Empirical Evaluation Methods anputer
Vision, Jun. 2005, p. 36.

J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Baf¢ “PROST
Parallel Robust Online Simple Tracking,” iRroc. of CVPR San
Francisco, CA, USA, 2010.

E. Ricci and J.-M. Odobez, “Learning large margin likelod for
realtime head pose tracking,” iaroc. of ICIP, Oct. 2009.

associate editor of the Machine Vision and Application j@ir



	Introduction
	Motivation
	Related Work
	Contributions

	Multi-Face Tracking With Particle Filter
	State space
	State Dynamics
	Observation Likelihood
	Tracking algorithm

	Target creation and removal
	Creation
	Track creation
	Observations and likelihood models
	Parameter learning

	Removal
	Track ending
	Observations and likelihood models


	Person identification
	Experimental protocol
	Databases
	Annotation
	Evaluation protocol
	Performance measures
	Algorithms
	Parameters


	Results
	Qualitative results.
	Quantitative multi-object tracking results
	Comparison with state-of-the-art single-object trackers
	Discussion

	Conclusions
	References

