A Track Creation and Deletion Framework for
Long-Term Online Multi-Face Tracking

Stefan Duffner and Jean-Marc Odobez

Abstract—To improve visual tracking, a large number of
papers study more powerful features, or better cue fusion
mechanisms, adaptation or contextual models, for instance. A
complementary approach consists in improving the track man-
agement, that is, deciding when to add a target or stop its
tracking, for example in case of failure. This is an essential
component for effective multi-object tracking applications, and
is often not trivial. Deciding to stop a track or not is a
compromise between avoiding erroneous early stopping while
tracking is fine, and erroneous continuation of tracking when
there is an actual failure. This decision process, very rarely
addressed in the literature, is difficult due to, for example, object ) . )
detector deficiencies or observation models that are insufficient ;'%Ot') aE:grgp('go‘t’t'gﬁ]c; frl‘:"‘;(‘:gz fr:?ar; tbh:c;?f?cs&ﬁetf%;ﬁ?cgmﬁslg‘nd
to _descrl_be .the full Var.'ab”'.ty of tra.Cked queCtS and deliver occur r’equiring an effective mechanism to remove and r’eiisieiaracks.
reliable likelihood (tracking) information. This paper addresses

the track management issue and presents a real-time, online . . .
multi-face tracking algorithm that effectively deals with the select interesting shots to show to the remote sites. Onteeof t

above difficulties. The tracking itself is formulated in a multi- challenges for face tracking here is that the participaotaat
object state-space Bayesian filtering framework solved with always look into the camera, and their attention might be on
Markov Chain Monte Carlo. Within this framework, an explicit  the touch table or on another person in the room.

probabilistic filtering step decides when to add or remove a target The most straightforward approach for solving the face
from the tracker, where decisions rely on multiple cues such

as face detections, likelihood measures, long term observations,{f@cking problem is to employ a face detector (€.9. [1]). How
and track state characteristics. The method has been applied €ver, despite much progress in recent years on multi-viea fa
to three challenging datasets of more than 9 hours in total, detection, these methods are mostly employed in scenarios
and demonstrate a significant performance increase compared to ywhere people predominantly look towards the camera. As
more traditional approaches (MCMC, RJ-MCMC) only relying e dqemonstrate in our results, this is not sufficient for more
on head detections and likelihoods for track management. . .
complex scenarios, where faces are missed ar@ond 40%
of the time due to less common head poses. Unfortunately,
the difficult head postures can last for relatively long pési
A. Motivation of time (up to one minute in some of our videos). This means
The detection and tracking of faces in real-time is of utmothat face detection algorithms have to be complemented by
interest in many computer vision applications from differe robust tracking approaches; not only to interpolate ditect
domains, e.g. video-conferencing, Human-Robotic or Humaresults or filter out spurious detection, as is often assylimad
Computer interfaces or in the analysis of social interactio also to allow head localisation over extended periods oétim
For instanceeffective group-to-groupommunication gains  Numerous multiple faces tracking methods have been pro-
increasing attention in modern video-conferencing applicposed (e.g.[12],[[3], 4], [[5], [[6]), mainly focusing on new
tions, and requires efficient and robust algorithms to deitee  features, new multi-cue fusion mechanisms, better dyramic
the position of a varying number of faces at each point ir adaptive models for instance [7].) [8]J [9]._]10], and riésu
time, which is the topic of ongoing research like in the pcoje are demonstrated mostly ehortsequences [7]. [8]1[9]/ [10].
“Together Anywhere, Together Anytime” (TA2). There, sev- However, very few of them address track initialisation and
eral persons sit in front of a camera (Fig. 1), communicatérmination, especially in terms of performance evaluati®
with each other and with one or several remote sites, aféfe detector is often used to initialise new tracks, but how
perform some shared activity on a touch-table in front ofrthe cope with its uncertain output? Aigh confidence threshold
Face tracking and other cues are used by a virtual operafdy lead to missing an early track initialisation. Convigse
component to understand the communication situations awidh a low threshold false tracks are likely to occur.
Track terminationcan be even more difficult. How do we

_(©2012 |EEE. Personal use of this material is permitted. Howemis- | (now at each point in time if a tracker is operating correztly
sion to use this material for any other purposes must be olstdioen the
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B. Related Work particles. However, they only addressed single, neatdion

face tracking, in high resolution videos and only evaluated

Principled methods exist to integrate track creation angeihog on 30 to 60-second video clips. Finally, other works
termmgnon within the tracklr_lg framework, for examplie_g. [22], [23], [24]) tackle the problem of long-terperson
Reversible-Jump Markov Chain Monte Carlo (RJ-MCMCj5ciing by analysing the statistics of features from short

[11], [12]. But to be effective, they require appropriatlBil 15015 (tracklets), and by proposing methods to effegtivel

scene likelihood models involving a fixed number of Obaegqciate them. These algorithms are different from ours as

servations (independent from the number of objects), agthy process the dateff-line, i.e. the observations at each
these are difficult to b_und in _mult|—face tracking applicats. oint in time are known in advance, and they mainly deal
Experimental results in Sectign VI show that an RI-MCMGgiit, tracking the position of théull human bodyas opposed to

based face trackef [L1] performs worse than the proposgd: faces. Another approach for multiple pedestrian fragk
approach, mainly because it relies only on the likelihood Br) associates smaller tracklet-line and in a statistical

decide on track creation and deletion, and not on other CWinpling framework but no principled mechanism for startin
like tracker location uncertainty or long term statistics. and ending tracks is proposed.

Kalal et al. [13] present an interesting approach for failure
detection in visual object tracking that is based on the idea o
that a correctly tracked target can be trackeatkwardsin C- Contributions
time. Unfortunately, the backward tracking greatly ine@s  In this paper, we propose a novel multi-face tracking algo-
the overall computational complexity (by a factor linear imithm. It relies on a principled Bayesian filter solved with a
the backward depth). In a particle filter tracking frameworkMCMC sampling scheme that handles object interactions. The
another solution is to directly model a failure state as @oam main contributions of the paper are the following:
variable within the probabilistic model [14]. However, shi | a5 explicit probabilistic filtering framework to decide
increases the complexity of the model and thus the infetence \yhen to add or remove an object from the tracker based

and it is difficult in practise to model the distribution of o the output of a detector, long-term image features, and
a failure state or failure parameters. Closer to our work, features from the tracker itself (e.g. state variance):

Dockstaderet al. [15] proposed to detect failure states in , ;s oflong-termimage observations to cope effectively
articulated human body tracking using a Hidden Markov \yitn missing or uncertain face detections;

Model (HMM). However, their method differs significantly , exploiting static observations (based on current image ob-
from ours: they only use one type of observation (the state servations) as well as dynamic ones (temporal evolution

covariance estimate) which in our case proves to be inseffici of certain features), for tracking failure assessment;

for assessing tracking failure; their observation are gedto 3 thorough performance evaluation on more thdrours
use a standard discrete multinomial likelihood model, \wher of videos involving2 to 5 persons per view, with around
our method learns these likelihoods in a discriminativéias, 22000 annotations, showing the superiority of our ap-

and their HMM structure (number of states, connections) proach as compared to a traditional RJ-MCMC approach

is specifically designed for their articulated body trackin to handle variable number of object tracks;

appllcatlorl. _ o « further comparison of a single object tracker version of
In applications that are similar to ours the problem of  our algorithm including failure detection with several

deciding when to stop tracking a face is usually solved in  state-of-the-art single object trackefs [7], [8][10].

a recursive manner. This means, assessing ”ac‘."”g fa"W@ extensively evaluate the impact of different factors of
is often left to the (sudden) drop of objective or likelihoogys hrohosed ‘method for real-world applications and draw
measures which are not easy to control in praciise [16]. [1flnciusions about the level of importance of these factors.
In many scenarios of interest, the camera is fixed, andTpjs paper extends our prior work [26] in several aspects:
due to the application and the room configuration, peopigioduction of new features to assess the tracking statase
in front of the camera tend to behave similarly over long,orough description of the algorithms and of the parameter
periods o_f time. However, mo_st of the_ existing face trackin@aming, more in depth performance analysis with illustea
methods ignore this long-term information, as they comeg@t regyits, more extensive experiments and comparison veita-st
on video clips that are often not longer than a minute. Or §t_the-art single- and multi-object tracking algorithms.
they use long-term information, it is mainly for constrodi  gection[]) describes our multi-face MCMC particle filter
stable appearance models of tracked objects [18], [19], efgmework. SectiofTlI presents our approach for track tivea
by working at different temporal scales [20]. Similarlynse 414 fajlure detection. Secti6illV describes how the alborit
methods [[9], [[21] train an (object-specific) detector o@Jin yeeps track of person identities. Sectigh V introduces our

during tracking, to make it more robust to short-term angynerimental protocol, while SectidlVI present our result
long-term appearance changes. However this increases Ifh%\lly in Sectio VIl we draw our conclusions.
computational complexity, because a separate model has to b

built for each person, and each such detector has to be dpplie
on the input image. Recently, Mikanett al. [16] introduced
the Memory-based Particle Filter where a history of pagesta We tackle the problem of multi-face tracking in a recursive
(and appearances |17]) is maintained and used to sample migayesian framework. Assuming we have the observafions

Il. MULTI-FACE TRACKING WITH PARTICLE FILTER



from time 1 to ¢, we want to estimate the posterior probabilityntersection area as a fraction of the average area of the two

distribution over the statX, at timet: bounding boxesB; and B; defined byX;; and X, ;, where
1 a(.) denotes the area operator. The factgr controls the
p(Xe| Y1) = 6p(Yt|Xt) strength of the interaction prior (set foin our experiments).

X /X PXeXim)p(Xia1[Yia-1) dXio1 . (1) ¢, Observation Likelihood
- t—1

. L . As a trade-off between robustness and computational com-
whereC is a normalisation constant. As closed-form solution

are usually not available in practise, this estimation iplen Slexity, we employ a relatively simple but effective obseiion
y P ' P likelihood for tracking. Another model could be used as well

mented using a particle filter with a Markov Chain Monte Given our scenario, we assume that the face observations

Carlo (MCMC) sampling schemé_[11]. The main elements %f{ are conditionall L d q . .

the model are described below. ot 'artionally Indepen ent given the state, Ieadlpg to
an observation likelihood defined as the product of the lgsib
individual faces likelihoods:

p(Yt|Xt): H p(Yig

ilki =1

A. State space

We use a multi-object state space formulation, with our Xir). “)

global state defined aX; = (X4, kt), where X; =
{X;+}iz1.m andk; = {k;;}i—1.m. The variableX;, de- Note that we did not include a partial (or full) overlap model
notes the state of face which comprises the position, speedin the likelihood component, nor any other contextual tiagk
scale and eccentricity (i.e. the ratio between height amtihyi techniques[[27]. Strong overlaps are prevented explidigty
of the face bounding box. Eadh ; denotes the status of facethe interaction term (E4.3) in the dynamics. This approach
i at timet, i.e. k;;, = 1 if the face is visible at time t, and is appropriate for our scenarios (teleconference, HCIJHRI
ki = 0 otherwise. Finally,// denotes the maximum numberwhere continuous partial face occlusions happen only yarel
of faces visible at a current time step. More often, faces are occluded by other body parts that are
not followed by the tracker, like a person’s hand, or another
person’s body crossing in front. Even a joint likelihood rabd
o ) would not handle these cases. Thus, for longer full occhssio
The overall state dynamics is defined as: our strategy is to have the algorithm remove the track of the
< 1% ) ) occluded face, and restart it afterwards as soon as possible
PXe|Xi) O(pO(X”kt)ie{l Jlf_}llk- _]i(x“t Xig-1), (2) The observation model for a faceis based onR = 6
e HSV colour histogramY; ; = [h(r, X; ;)] (r = 1..R), that
that is the product of an interaction prigp, and of the e computed on the face region described by the ¥ate
dynamics of each individual face that is visible at iteratio-rhey are compared to histogram modefs (r), to define the

¢ like in tracking methods for a fixed number of targetgpservation likelihood for a tracked face as follows:
[11]. Note that this is actually feasible since the creation

and deletion of_ targets are dgfined outside the filtering stngMXi_’t) - eXp(*/\Di (Dz[}L:,t(r)vh(r7 Xi,t)]) —Dy),
(see next section). The position and speed components of —t
the visible faces are described by a mixture of a first-order (5)
auto-regressive model, and a uniform distributiorp,,, i.e., where D denotes the Euclidean distaﬂp@m = 20, and
if = denotes a position and speed component vector, we hal&: is a constant offset defining the distance at which the
p(idlwii—1) = apa(Tig|mi1—1)+(1—)pu(zit|7i—1), with  likelihood in Eq. [$) givesl.0. More precisely, we divided
Pa(Tit|Tit—1) = N(Azt—1;0,%), and p,(z;+|z;+—1)) = ¢ the face into three horizontal bands and in each band com-
with ¢ being a constant allowing for small “jumps” com-puted two normalised histograms with two different levels o
ing from face detection proposals (see Ef. 8). A first oguantisation. Specifically, we used the scheme proposé?] in [
der model with steady-state is used for the scale and &dhich decouples coloured pixels (put indg, x N, HS bins)
centricity parameters. Ifz denotes one such componentfrom grey-scale pixels/, separate bins) and applied it with
(v —8S) = N(a(z;—1 — SS);0,0ss), where SS denotes two different quantisation levelsy, = 8 and N, = 4 bins
the steady-state value. The steady-state values for sodle ger channel. This choice of semi-global multi-level histogs
eccentricity are updated only when a detected face is assdeisults from a compromise between speed, robustness to
ated with the face track and at a much slower pace compagfpearance variations across people as well as head pose
to the frame-to-frame dynamics. variations for individuals, and a well conditioned likedibd,
The interaction priop, is defined as i.e. peaky enough to accept a well identified optimum, bulhwit
a smooth basin of attraction towards this optimum, adapied t
po(Xslky) = H‘b(Xi»thjvt) x eXp(*)‘gzg(Xi»thLt))’ low sampling strategies.
{i.i}eP {i.j}€P 3 The histogram models of one face are initialised when a
©) n%\{v target is added to the tracker. Furthermore, to improve

preventing targets to become too close to each other. The S \ . s .

: ; . . ... thétracker’s robustness to improper initialisation andnging
P consists of all possible pairs of objects that are visible.
The penalty functiong(X;:, X;¢) = % is the 1A Bhattacharyya distance could have been used as well.

B. State Dynamics




lighting conditions, they are updated whenever a detected f Ci1
is associated with the given face track (see below):

hio(r) = (1= hiy_y(r) +ehiy(r) Vvr, (6)

wherer¢, denotes the histograms from the detected face re-
gion, ande is the update factor (set t2 in our experiments).

Fig. 2. The HMM used at each image position for tracker targeation.
The variablec; indicates a face centred at a particular image position. The

D. Tracking algorithm probability of ¢, is estimated recursively using the observatiofs..of .
At each time instant, the tracking algorithm proceeds in
two main stages: first, recursively estimate the states @f th [1l. TARGET CREATION AND REMOVAL

currently visible faces relying on the model described &ov The way objects are added and removed from the tracker
and solved using a MCMC sampling scheme. Second, make, key feature of the proposed algorithm. In our applicatio
a decision on adding a new face or on deleting currenté¢enario, the goal is to avoid false alarms as much as pessibl
tracked faces. This second stage is described in Secfion {this means, the tracker should be able to detect as quickly as
The MCMC sampling scheme allows for efficient samplingossible if there is a tracking failure. On the other hand, it
in this high-dimensional state space of interacting tag@d should not stop tracking when there is no failure since it may
follows the method described in [11]. take a long time until the face is detected again.
Let IV be the total number of particles add,; the number e propose to use two different Hidden Markov Models
of “burn-in” particles. At each tracking iteration, we do:  (HMM) for that purpose, as described in the following sec-
1) initialise the MCMC sampler at timewith the sample tions. One is used for object creation and the other for aobjec
Xﬁo) obtained by randomly selecting a particle from theemoval. Each of them receives different types of obsermati
set{X'"), s = (Ny+1)... N} attimet—1 and sample A face detector (for both frontal and profile views) is
the state of every visible targétusing the dynamics called every 10 frames (i.e. around twice per second, as our
p(X;¢|Xi—1) (deleted targets are ignored); algorithm is able to process around 20-23 frames/s in real-
2) sample iterativelyV particles from the posterior distri- time). The HMMs are updated only at these instants, but
bution of [1) using the Metropolis-Hastings algorithm:rely on observations computed on all frames since the last
a) sample a new particIXt/ from a proposal distri- update. According to our experiments, applying the detecto

bution Q(Xt/pit(S)) (described below): to every video frame d|q not significantly improve the trgtgq
o performance and considerably slowed down the algorithm.
b) compute the acceptance ratio:

Before the creation and removal step, each detection is
e (X Y1) ¢(X: 7 1XY) associated to a track provided the following conditionsdhol
a=mm p(X Y1) X 1% ) 1) the detection is not associated with any other target,
- s (s41) e 2) it has the smallest distance to the tracked target,
c) accept the particle (i.e. defidg, = X, ) with 3) the distance between detection and target is smaller than
probability . Otherwise, add the old particle (i.e. two times the average width of their bounding boxes,

setX," "V =%, 4) the two bounding boxes overlap.

After time stept, the particle set{XE”}ﬁLNHH represents Although a more generic way would be to use training data
an estimation of the posterigX,|Y.,). to learn the association rules and parameters as domnelin [28]
The proposal functior(-) allows for selecting good can- for instance, the above conditions work well for our data in

didates for the particle set. Efficiency in MCMC samplinghe large majority of cases. _
is obtained by modifying object states one at a time. More In the following, we describe the HMMs for tgrget creation
precisely, a new sample is selected by Iettnig/ = Xt(s), and remq(\j/al. gc:(te ttr;]at !’lgtt_urlgllyt,_onlyfun-assotczlate(tj tietes
randomly select a facé amongst the visible ones, and thef'© considered for the infiaiisation ot a new target.

sample the proposed sta¥ , of facei from:

A. Creation
(X}, |X,) = [(1 _ a)ﬁ ZP(XMXSZ,?—Q When initialising a new target we have two objectives: first,
Tty minimise erroneous initialisations due to false deteci@and
+ap(X! t|X§1)} 8) second, in_iti_alise correct targets as early as possible.

For deciding when to add new targets to the face tracker,
that is a mixture of the state dynamics (ensuring temponak propose a simple HMM that estimates the probability of
smoothness) and the output of a face detector (avoidingdraca hidden, discrete variable (¢, j) indicating at each image
drift) controlled by the factory,. whereX¢ denotes the state position (i, j) if there is a face or not at this position. FIg. 2
of the closest detection coming from a face detector [1] anltlustrates the model. In the following, we drop théjj
associated with facé Again, targets removed at the previousndices for clarity. Let us denote b@; = [of ,...,0f v ]
step are ignored, while recently added targets are simpghe set of N. observations at each time step and by
sampled around their initial position. 04, = [05, ..., 0¢] the sequence of observations from time



1 to time ¢t. Assuming the transition matrix is defined as:
p(etlei—1) = 1iff ¢, = ¢;—1 and 0 otherwise, the posterior
probability of the state:; can be recursively estimated as:

. p(Of|er = s) p(ce—1 = s|OF.,_
p(Ct:5|01:t)_ ( tlt ) (t 1 ‘ 1:t l)

- ~ _ / _ / > 9
Zs/ p(Oﬂct =S5 )p(ct,l =S5 |Oi:t71) Fig. 3. Example image (left) with an illustration of the copeading tracking
N, (9) memory (right) during tracking. Qualitatively speaking,ckacreation will
where c o c be faster (almost immediate) when a new face detection is oibervthe
p(Ot |Ct) - Hp(om|ct) (10) “white” regions whereas repetitive detection will be neg:de initiate a track
i=1 in a “black” region. Similarly, when an object track moves tadX regions,

1) Track creation: for each detected face that is nofts failure probability will become higher. See text for dita

associated with any current face target, we decide whether ﬁ\ h e — 5 denote the offset and th
track is created or not. To this end,(if j) denotes the centre "W c'c € parameters; = (141, 01), denote the offset and the

o : g slope of the sigmoid (see Fi@l 4). Intuitively, the offset
position of the face detection, the ratio: denotes the threshold value beyond which an observafign

re(i, ) = pleli,j) = 101,4(i. ) (11) is more likely to occur within the bounding box of a detected
’ p(ce(i, ) = 0[O, (4, 7)) face than in a non-face area, whereas the slope controls how
is computed. Ifr¢(i, j) > 1, then a new track is initialised atfast the likelihood change is around this threshold.
(i,7). Otherwise, no track is created from the given detection.3) Parameter learning: the parameter®; = (d;, ) of
2) Observations and likelihood models: we propose to the sigmoid functions in equatiopsl16 dnd 17 have been ttaine

use two different types of observations:, the output of the offline with a set of v + observations);. These observations
face detector and°,, a long-term “memory” of the states (j.e.are tracking memory values that have been collected froim rea

positions) of tracked faceX,. tracking sequences and are composedy 6fpositive instances
The first observation is defined as follows. At timeand measured at image positions of correct face detections, and
image position(i, j) we set: N~ negative instances measured at image positions of false

detections. To train the model, we maximise the posterior

1 if (i, j) is covered by one of the probability of the labels for the given observations

0p 1= bounding boxes of the detected faces, (12)
0 otherwise. NE
The likelihood of the first observation is then defined as e = argglaxnlp(c = Ciloi, ©), (18)
p(ofy =0lee = 0) =1~ fa, plof; = lle; = 0) = fa, where C; € {0,1} denotes the class label af;, and

p(ogy = Oley = 1) = md, p(ofy =1lee=1)=1-md, p(c=¢o;,0) x ploj|c = ¢;,0) is given by Eq[I6 and 17,
(13) and we assumed an equal prior on both classes. In practise,
where fa is the empirical false alarm rate ame the missed We find a good approximation &* by doing a grid search
detection rate of the detector. According our detectionltes in @ reasonable range over the parameter sgacEigure[4
from several datasets, we sgt = 0.0001 andmd = 0.4. shows an example of a pair of learnt sigmoid functions and the
The second observatiasf , is based on the history of pastrespective decision boundary (in this case for target rafjov
image positions of tracked faces, which we will call “trauzi  If observations are greater than the ratio 252}2233 > 1,
memory” in the following. At each iteration of the trackengt that means a face is more likely to be present. Otherwise, it
tracking memory is updated slowly according to the mean &f more likely that no face is present.
the current state distributioX:

0f, = (1— 5)0571’2 + BI, , (14) B. Removal

where 8 = 0.001 and _ During tr_ackln_g, we want to assess at each p0|_nt_ in time
if the algorithm is still correctly following a face or if itds

1 if (i, 5) is covered by one of the lost track. The algorithm can lose track, for example, when
Li(i,j) = bounding boxes described B, (15) it gets distracted by a similar background region or when a
0 otherwise. person leaves the scene. More concretely, the objective is t

Fig. [@ shows an example of the tracking memory durini@terrupt the tracking as soon as possible if a failure ogcur
a run of the face tracker. Given the current valueofif a and to continue tracking otherwise, even when a face has not

region is covered during one minute the observatignswill been detected and associated with the track for a long time.
reach a value 0.5 approximately (starting from 0)_’ In a way similar tq target initiali_satio_n, we propose to use
Intuitively, we would like to initialise targets more quigk for each tracked facean HMM estimating at each time step

in regions where a person has been “seen” previously. Thisthe hidden status variabl;,, indicating correct tracking
we modelp(o$ ,|c;) with a pair of sigmoid functions: (ks,e = 1) or tracking failure g; ; = 0). We will drop the face

N . . index: in the following. Fig[5 illustrates the proposed model.

p(0faler =1,0) = —arctan(y(0f — ) + 5 (16)

. g . Let us denote byO; = [o];,...,0f xo] the set of N,

p(ofaler = 0,0) =1 —p(ofsle, = 1) , (A7) observations at each time stepand byO7,, = [O7, ..., O!]
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Fig. 4. Example of an observation likelihood model (hefy described
by a pair of sigmoid functions with learnt parameteéts = {6, u}. The

parameters of the positive sigmoid function (solid red curkiaye been
optimised to model best the positive (blue solid boxes) andhtneg (purple
dotted boxes) training observations (here illustrated isjograms) according
to Eq.[I8. The offsety (here atz = 0.29), where the two sigmoid
paired curves cross, defines a soft decision boundary. Mogeisely, in

this example, an observation above this threshold favougetaemoval, as
ploilk = 1) > p(oilk = 0), and vice versa. The paramet&rcontrols

the slope of the functions, and thus the strength and (u@ajogy of the

decision. In this case, the slope is not very steep, reflgthia fact that small
observations can be observed even when track is not lost.

ktfl

Fig. 5. The HMM for target removal, used for each tracked fate variable
k¢ indicates if a given face is still tracked correctly or if ddige occurred. The
probability of k; is estimated recursively using the observatioﬁq..o: Ny

the sequence of observations from tinteto time ¢. The
posterior probability ofc, can be recursively estimated as:

i p(O ko) plkelky_y) p(k;_1|OF,, )

p(k|O7.) = - . :

O = S (O p(HI_) p(K 1O, )

i X (19)

where PO} k) = [ [ plolko) (20)
=1

The state transition probability(k;|k;—1) is set to 0.999
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Fig. 6. Trained likelihood functiong(o5|k: = 1) to p(o}|ks = 1). The
soft decision boundary for a given observation type is theke where the

curve crosses the ling = 0.5. A steeper curve qualitatively means that the

corresponding observation is more discriminative for theigiec to remove
a target or not (e.g. for the likelihood and variance dropeotstions). Note
that although the tracking memory slope is not as steep, itthetess plays
an important role since spatially, a tracker can quickly mawenfa position
where the observation is greater than 0.58 (i.e. above thésondary), that
is, a position in a region where tracks have been observeghtlgcto an
image positions where the observation is very close to 0.

« three dynamicobservations d; 5, ..., 0 ;) that provide
indications on theemporal evolutionand variability of
certain observations.

Except for one observation, all likelihoods are modelled by

pairs of sigmoid functions:
X ) 1
p(og ;|ke = 1,0) = a; arctan(d; (o ; — pi)) + 3 (22)
p(0§7i|kt =0,0)=1- p(o§7i|kt =1), (23)
where, as for target creation observations (sedfionll|ItAg

. ) : | ,
for staying in the same state aid)01 for changing state, @MPlitudea; is set to-. (or —~ for some observation types),

assuming a frame rate of approximately 20 frames per secdiffl the parametei®; = (d;, ;), i.e. the slope and the offset
as in our experiments. of the sigmoid, have been trained offline with a set of positiv

1) Track ending: for each tracked face and at each tim@nd negative ob.servation.s as describefd. at the end _of Section
step, we compute the ratio: [MT=A] The only d|ﬁ§renpe is that t.he training observatioare
(ke = 1]OT.,) collected at each time instant during tracking runs and nipt o
k= P = 2 Mhe) (21) when faces are detected. Figlire 6 shows the plots of thetrain
p(ky = 0|07,) functions fork = 1. Below, we describe each observation we
If 7% < 1 for a given face, then the tracking is considered tbave used and comment on the learnt parameters.
have failed and the target is removed. Static observationsthe first static observation for a given
2) Observations and likelihood models: we propose target is based on the output of the face detector:
to use N, = 7 different type_s of observation©; , {1 if a detection is associated with the targ
[0} 1,...,0} ;] extracted from the image as well as the state ob; ; = ) &4)
the tracker itself. We can divide them into two categories: 0 otherwise.
« four static observationsd; , . .., o} 4) that provide indi- The likelihoodp(o; , |k;) is defined in the same way as fa,
cations on thestate of the trackerand in Eq.[I3 (that isp(o} ; = ulk; = 1) = p(of ; = u|c; = ).




The second observatiari , is the tracking memory value at

the respective target positignn, ») in the image, as defined s f
in the previous section (EG.114 ahd] 15): ar
0:,2 = 0?,2(77% n) . (25) ‘2
This ensures that the tracking of a face is more likely to be 15|
maintained if a face stays at its previous position (with ghhi 1t
tracking memory value). And conversely, the target shoeld b os|
removed with a higher probability when it moves to image 0

regions that were never occupied by a face before. From the Cor s s e e ®
slope of the sigmoid function correspondingg@5|k; = 1) Fig. 7. lllustration of the Page-Hinckley test to detectugitrdecreases of

; ; ; nal. The solid red line shows the temporal evolution ofissignal, the
shown in FIgEB’ we can see that these observations prOVId%uSrép%e dotted line shows the computed result of the Pagekitindest that

relatiVel)’_discriminan_t informa:tion regarding. ~ we use as observation to detect abrupt signal drops. At timel4 a drop
The third observation type is the tracker observation ilikelof the signal occurs and is correctly detected (peak of jpudplted line).

hood computed at the mean state vaKig; of targeti: _ _ _
leading tom,, , = M, ;, and thusn,, ; = 0. FigurelT illustrates

0r3 = p(YiilXin), (26)  the Page-Hinckley test with some example dataz At 14 a

as defined by Eq5. The likelihoge o} 5|%:) is again defined signal drop occurs leading to a high valuerby,.
by a pair of sigmoids (Eq[ 22 anﬁ]23) Figuie 6 shows Similarly, for detecting an abrujricreaseof w we compute:

that these observations are highly discriminant with respe Jw

to k;, in the sense that a tracker likelihood value below Vot = Us,t—1 +( G 2 )) (1)

approximately 0.3 is characteristic for a tracking failure Yot = Min(tp ¢—1, U ¢) (32)
The fourth observation relates to the variance of the target N

filtering distribution. More precisely, let?, , and o2, , be oot = Uit = Ut (33)

the variances of the horizontal and vertical position oféar where U, = 0. In its original form, the Page-Hinckley test

stateX; ;. Then we define produces a binary output. It is onesif,, ; or 4, is above a

of , = max(o?, ., 0%, ). @27) p_redefined threshold and zero otherwise. Herg, we propose to
b4 Lt Tty directly use the values, ; or @, , as observations.

A higher variance of the state distribution means a higherThus, using equatioris #8433, we define:

uncertainty (and vice versa), and the track should be stbppe .
more quickly. The rather flat function in Fig]l 6 shows that Ot.5
these observations are less discriminant on their own. Observations} ; indicate drops of the likelihoog(Y,|X;)
Dynamic observationsthe three remaining observations argf a given face (se€&_26). And} ¢, o, indicate abrupt
based on the temporal variation of different features. Thegcreases and increases of the variance of the state limib
rely on the detection of rapid increases or decreases owefined in[2V. The likelihood functions(o} ;|k¢), (Ots\kt)
time of particle variance and observation likelihood. Tisth gnd p(Ot -|k:) are defined by pairs of SIngIdS (E@]?I] 23)
end, we assume that the values of these features are normgity parameters trained offline. The resulting s|gmo|d50goj'
distributed during tracking, and we use the Page-Hinckleind o} ; are relatively flat, thus not so discriminant on their
test [29] to detect jumps or drops of these (one-dimensjonaivn (see Fig.6). The observatiofi;, that is the rapid increase
Gaussian) “signals” with respect to their means. This tegf position variance, is more discriminant.

works as follows: letw; be the signal for which we want

to detect an abrupiecrease Then, the following values are IV. PERSON IDENTIEICATION

computed at each iteratian

— A T — A a —
= Moy 3 0p6 = Moy 4 0p7 = oy 4 - (34)

The algorithm further tries to keep track of the identitiés o

Jw different persons and associates each track with a person, i
My, =M, - = 28 y ) . T
¢ =1t ( — (@ 2 )> (28) for each new target track it decides if it belongs to a presiypu
Mo,y = max(Me 1, M) (29) seen person or if it is an new person. In this work, we built
Py = Moy — M, . (30) person models which are longer-term descriptions of person

appearance acquired from observations during the tracking
whereM,, o = 0, j,, is a constant that determines the tolerategrocess. Here, a simple colour-based model, similai_to [20]
change of valuev, andw, is the running average of. M,,; has been used. More specifically, the moffe} of a person
accumulates the values going above the expected lower boynid composed of two colour histograms: one describing the
(@ — ju). The valuem,, memorises the maximum valueface reglonh 4» and one for the shln‘l;L6 The structure of

of this cumulative sum, and the difference between thedee hlstograms is similar to the one used for the observation
last two valuesi,; (Eq.[30) is an indication of an abruptlikelihood in the tracking algorithm (II-C), i.e. two diffent
decrease of the value. On the other hand, ifv; decreases quantisation levels and decoupled colour and grey-scale bi
only gradually, then the running average; will follow this If a target is added to the tracker and there is no stored
decrease. The cumulative suid, ; will constantly increase, person model that is un-associated, a new model is ingiglis



immediately and associated to the target. Otherwise, tte fahe overall complexity of the videos is higher because ofemor
and shirt histogramsh{t, hi,) of the new targeti are difficult lighting conditions (e.g. cross shadow betweem-pe
computed recursively over successive frames and stored imple), it contains more people including children, so thensce
P?,. After this period, we calculate the likelihood of eachis more dynamic. Also, occlusions occur more frequentlye Th
stored modelP; ; given an unidentified candidate”;: videos of dataset 3 are rather challenging for face trackmg
people sit close to each otRerAlso, the lighting condition
p(Pjt|Py) = exp (—)\(waZ[hf,whf,t] + wsDz[h;tvh;t])gv and image quality is worse in the second video of this set.
(35) Finally, the number of visible persons is varying throughou
where D is the Euclidean distance, and the weights athe videos due to people leaving temporarily the scene.
wy = 1,w, = 2. A given personi is then identified by simply
determining the modeP,, ; with the maximum likelihood: ~ B. Annotation
m = argmax p(Pj¢| P,) | (36) AIr_nost 22000 videos frames haye been annota_ted. The time
j ' spacing between two annotated video framgwaries from
0.04s to 12s according to the dynamics of the scene. Thads,

0.1 here). If not, a new person model is created and add'gdsmaller for periods with large movement of the persons and

to the stored list. All associated person models are upditted”ce versa. In total, there are more than 60000 head position
each iteration with a small factai? — 0.01. The candidate @nnotations, together with an identifier, i.e. a number that
models are updated with factor — 0.1 R assigned to each person. The position and size of a head is

described by a bounding box.

provided thatp(P,, .| P;;) is above a threshold (we chose

V. EXPERIMENTAL PROTOCOL

C. Evaluation protocol
A. Databases

Since the paper contribution is mainly about track failure

Approach. Many tracking algorithms are tested on shoréetection (andltrack creation), one could _for instance imeag
sequences (maximum one to two minutés) [7], [8], [9], [1d]o label all fa_|Iures of a trackmg algorithm and evaluate
where the creation/removal problem is not addressed afffether the failure detection algorithm performs well ot.no
therefore their test sequences are not appropriate for GifWever, since each tracker may fail at different momeras, f
purpose. Further, these sequences are often specificatly mdifferent tracks, depending on history (for instance if ackr
up (e.g. moving a puppet or a coke can attached with a witdfS removed or not has impact on th(_e current model due for
[7], [L0] and do not correspond to any application scenariolnStance to the co!our model_ adgptanon_), or on parameters,
In this paper, we adopt another approach, and grouﬁHCh an approgch is not feaS|b.Ie in practise. We thgs e@luat
our experiments on a real use-case, with long recordin?@r approach in terms of tracking performance, which is our
involving natural individual and interactive behaviouemd final task of interest. To this end, the principal performeanc
without people caring about the camera or the tracking tagR€asures are precision and recall (over time) of the face
Although the data may not look particularly challenging, iracking .result, as we want to track faces as long as possible
is indeed full of cases that can affect tracking due to tH& obtain a high recall) and stop tracking as soon as a
variety of situations, of poses, of pose changes and dyrsamifé"lure occurs (to increase the precision). In the follogvm
quick body shifts, partial occlusions by hands (when peopfé® d_escrlbe the used performance measures, the different
touch their face or their hair, drink or eat), full occlusiorflgorithms that we compared, and their parameters.
by others, or combinations of the above. In addititong 1) Performance measures:in a given video frame, first,
sequences can be challenging for algorithm using adaptatfy€"y racked face (or face detection) is associated with a
components (like our colour histogram models). Indeed, tggound trgth fgce fro_m the annotation. T.he associationsrule
difficulty with adaptation does not always lie in the mosg™® described in secud;_ElIl. A face detectlc_)n or trackepatit
dynamic situations (where the objects can be distinguishigcounted as correct if the F-measure with the ground truth
from the background), but also in other quiet and apparentfydreater thar.1. The F-measure is defined as:
simple moments, where partial drift in the representatian c Fe 2a(B; N Bj) 37)
actually occur and ultimately lead to failure. a(B;) + a(B;)’
Data. Experiments have been conducted on more than 9 howfigere B; is the ground truth rectangle (i.e. a bounding box
of video data that have been annotated extensively. We ugédhe entire head) and; is the rectangle output from face
three sets of videos recorded in different environments (s@etection or tracking. In other words, the F-measure is the
Fig.[). According to our scenario, recorded people have bei@tio between the intersection and the average area of the tw
sitting at a table and filmed by a central camera (roughly pectangles.
3 metres away). They have been playing online games withWe further define the recall and false positive rate for an
people in a remote location using a laptop or touch-scresn. nhtire video as:

a result, they are often looking downwards and their faces ar Zf:z 0;d; Zf:Q 0; fi
often not detected by a standard detedtor [1]. R= 59 5 = S 5 (38)
i=2 %% i=2 0

Figure[1 shows example images from the three datasets. In
dataset 1, the lighting conditions are overall good. Ingktt&,  2Dataset 3 is available at http://www.idiap.ch/datasBt/ta


http://www.idiap.ch/dataset/ta2.

whereG is the number of annotated framefs,the proportion  « MCMC/HMM1+2c: the proposed MCMC tracker with
of correctly tracked/detected faces in framé.e. those for HMMs for target creation and removal using all the
which F' > 0.1), f; is the number of false positive outputs observationsstatic and dynamic

divided by the number of ground truth objects in fram@nd  3) parameters: all the trackers use 500 particles with

d; is the time difference between framieandi — 1. a burn-in proportion 0f25%. For efficiency, the videos are
We also measure the total number of interruptions for &ocessed at a resolution 6£0 x 360 pixels, and the original

giVen dataset. An interruption is defined as the event Whﬁ'ﬁme rate haS been Changed to 12.5 fps The face detector

a track is falsely ended, i.e. the face (ground truth) id stihreshold has been varied from 2 to 4 to obtain the different

present but the respective target is removed from the trackgrecision-recall curves. The value of the other paramétass
Finally, to measure the accuracy of identification as d@een mentioned directly in the text. In practise, the atboni

scribed sectiort 1V, we computed thabject purity [30] for  gid not exhibit a high sensitivity to changing their setting
each ground truth object:

G
OP — ZiZ‘Q 0:q; ’ (39) o VI. RESULTS
Y io 0 A. Qualitative results.
where G is again the number of annotated frames, @gnd Our first experiment illustrates the proposed track creatio
is the proportion of correctly identified faces in frameas and removal components. Figure 8 shows some snapshots of
explained in the following. The identity assigned to a gmunthe results. The different colours of the rectangles repres
truth object at time is given by the algorithm described indifferent identities. In frame 1152 (Fig. 8[d)), the persemted
[Vland more specifically E4._36. Once the tracking has beem the left starts to be occluded for the first time. After salre
run on a complete video, we can compute the above rate fyrtial and then full occlusion moments, the object is finall
associating to each object the face track that has the longesnoved at time 1284. The track is re-initialised in framé4,4
overlap with the object (according to the F-measure). shortly after the face re-appears, and again removed inefram
) 1684 (Fig[8(R)) after another longer occlusion.
2) Algorithms: to evaluate our approach, we compared our Figure[® shows for this video segment (of Fig. 8) the evo-
results against a standard face detedior [1] including 80dg ion of the track removal observation likelihoogéo! . |k, )
for frontal and profile views, Wlth two competitive basebne 5,4 posterior probability(k; = 1|O7) of keeping the track of
(RJ-MCMC and MCMC baseline), and also conducted e¥gg |eft sitting person. The graph gives some intuition ow ho
periments by switching off different parts of the model tgne proposed algorithm works and why. Absence of detegtions
evaluate the benefit of the different approach components,, tracking memory or likelihood value as well as rapid
More precisely, the algorithms are as follows: changes in variance are important cues for detecting patent
« RJI-MCMC a tracker based on the Reversible-Jumpacking failures. However, it is the fusion over time of the
Monte Carlo Markov Chain algorithm_[11][ [12]. In contributions of all cues that allows to make reliable decis.
addition to theUpdatemove, which follows the MCMC  The tracking results in Fig_10 illustrate another situatio
description in sectiof ID, four other moves have beegnd the role of the interaction prigr, (Eq.[3) that prevents
implemented to handle the creation and removal of tagtrong overlap between trackers. In this case, one face is
gets:Add, Delete, StayandLeave For more details, we peing occluded by another one. Both models compete for the
refer the reader td [11]. [12]. observations, but the occluded head being visually lessylik
« MCMC baseline:an MCMC-based tracker, i.e. the al-s kept on the side thanks to the spatial prior, which defieigi
gorithm described in sectidnl Il. For target creation angenerates a strong drop in likelihood. Full occlusion issthu
removal, the following strategy has been used: every (Upnplicitly handled by our track creation/removal algorith
associated) face detection is initialised as a new targgiopping the occluded, i.e. less confident, track, and tiaini

We aISO tl’ied to initialise a target Only aft@evel’al ising it later on when Obtaining a new detection.
successive detections but this didn’t have a large impact

on the precision. A tracked target was removed if it had
no associated detections for 100 frames (8 seconds) oP
the likelihood dropped below0% of its running average. In the second set of experiments, we measure the per-

e MCMC/HMM1: the proposed MCMC tracker with theformance of the proposed tracking algorithm while varying
HMM for target creation (see sectiodn_IlItA). Targetdifferent tracker components. In Fig.]11, we plot the recall
removal has been done as for the baseline. and false positive rates for the tested algorithms with gingr

« MCMC/HMM1+2a: the proposed MCMC tracker with face detector threshold (from 2 to 4). The performance using
HMMs for target creation and removal (see sectiorsoth creation and removal HMMs is higher than for algorithm
[M=Aland [I-B). Observationso’, o}, ando}; have been MCMC/HMML1, only using the HMM for target creation and
used, that is the ones based on face detections, on thlying on face detections and likelihood drops to assess
likelihood, and on the state distribution variance. tracking failure. Comparing MCMC/HMM1+2b (orange lines)

e MCMC/HMM1+2b: like “MCMC/HMM1+2a” but using with MCMC/HMM1+2a (dotted magenta lines) shows that
the additional observations,, i.e. the tracking memory. adding the tracking memory observatiof) clearly increases
That means this algorithm uses all tstaticobservations. the recall. Finally, algorithm MCMC/HMM1+2c¢ (black solid

i Quantitative multi-object tracking results
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(e) frame 1274 ' (f) frame 1488 ' (g) frame 1616 ' (h) frame 1684
Fig. 8. Tracking result on a video with several occlusiond tacking failures (left sitting person). Different coted rectangles represent different identities.

e

Fig. 10. Snapshots of a short video showing one face beiniyaed by another one. The girl's track (blue rectangle) isexily removed by detecting a
failure and reinitialised automatically afterwards. Ndtattidentities, represented by rectangles of differenbw, are kept consistent.

lines) that incorporates the dynamic observations detgcti

Fig. 8 a) D) ¢ a) e) U a) n) . . K i i ) .
is 1F ‘ ‘ ‘ 3 jump/drop in likelihood or position variance results inther
‘gg §§ E ‘ ‘ _/\_/\ ] performance improvement in most of the cases. Comparing
° lo0g  po00; | 1200 1300 1400 3500 1600 1700 the results for the three datasets, one can notice that ¢ad re
§T§ §§ C ] j of dataset 2 is lower than for the other sets, probably due to
g8 o2l RS : ‘ ‘ ] alower recall of the face detector (see Figl 12).
1000 1100 1200 1300 1400 1500 1600 1700 3
3 o8 — We further compared our method (MCMC/HMM1+2c) with
£ §§ N AL N | ‘ ]  other tracking approaches: MCMC baseline and RJ-MCMC
= 1000 oo, | 1200 (1300 1400  js00 160 1700 [LT]. The results are shown in Flg.]12, together with theltssu
38 0L ]  of the face detector, as a reference.
8 o, ‘ ‘ ‘ : ‘ ‘ Clearly, for low detection thresholds the false positiv@)F
1000 1100 1200 1300 1400 3500 1600 1700 . . .
5 o8 ‘ : ‘ ‘ ‘ rate of the face detector is much too high for many practical
28 o6 A — - applications. For higher thresholds, the detector misskes a
= 0.4 ‘ ‘ ‘ ‘ ! ‘

“lood 1100, | 1200 1300 100  diso0o  1e0p 1700  Of faces. We can see that for an acceptable FP raig {) the

08 ‘ ‘ ‘ recall is rather low (betweef.4 and0.7). The dashed green
lines show the results of the baseline tracker. Althougloéasd
061009 1100; | 1200 1300 1400 1500 1600 1700 ot yse the HMMs for target creation and removal it already
04 s } ; ; achieves a good performance.

variance
drop
o
o
T

variance
jump

026 1o | 100 1m0 1400 ise0  1e00 1700 The performance of the proposed algorithm is clearly
82 iF — 1 1 - better than with the RJ-MCMC and the MCMC baseline
838 Mb TN ‘ 5 ~—>3  systems. Since the tracking algorithm for the MCMC baseline
=7 1000 1100 1200 130 1400 150 1600 1700 s the same as for the proposed method, the performance

improvement is clearly due to the target creation and remova
Fig. 9. Evolution of track removal likelihoods(o] ;|k+ = 1) and the mechanisms. The precision of RJ-MCMC is rather low be-

posterior probabilityp(k: = 1_|O§) of correct tracking for the person sitting c51se the creation and removal of targets is only based on
left in the short sequence illustrated in Fig. 8. Verticablued lines a) to

h) correspond to the frames in Fld. 8. A likelihood value above (green the observation likelihood, as in_[11]. Note that, unliker Ol‘!
dashed line) favours keeping the track, and vice-versa.tfétek is actually approach, RJ-MCMC adds and removes targets at the particle

removed if the final posterior probability (last row) is bel@b. Initially, in  |ayel. Although this is a principled statistical framewahat
(a), tracking is correct. At (b), the progressive occlusiesults in a decrease del h L h belief h b
of likelihood, but the face becomes visible again (c). In (e stronger models at each point in time the current beliet on the number

occlusion pushes the track off the recent tracked face aea@aptured by Of visible targets, it is more difficult to capture longerste

the low tracking memory, and results again in a low tracketlitie®d, which dynamics and features from the state distribution itselfe T
jointly almost triggers the failure detection. It is ultimBte¢he continuous . .

absence of face detections and the sudden variance jump thaellow to MCMC baseline (green dashed I'nes)- on the other hand,
correctly identify the failure and remove the track. The keacis correctly adds and removes targets based on more efficient, longer-ter
reinitialised around frame 1415. Then, a transient occlusiocurs (f) and gpservations namely the likelihood with respect to its mea
later a new occlusion generating a low tracking memory andilii@ed as ’ . .

well as a rapid state variance drop (usually due to only fertigdes having and the face detector output. Thus, its performance is thette

a high weight) leading to the correct stop of the track at tiri84L than the one of RJ-MCMC.
Table[l compares the algorithms for a given face detector
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false positive rate
Fig. 11. False positive rate and recall for Datasets 1 to Bgusifferent
observation types C. Comparison with state-of-the-art single-object traske

threshold. The proposed method outperforms the otherdlfor a We also compared our approach with other state-of-the-
three datasets. Also, the total number of tracker inteiwnpt art algorithms that rely on different appearance modelling
is decreased. This means that the proposed method maintaingtegies. We focus on the longer-term tracking behawdur
face tracks longer, even when the face detector provides these algorithms because previous works [8], [7], [9].][10]
output for extended periods of time or when the likelihood i81] do mainly evaluations on videos shorter than one minute
temporarily decreasing. Since available codes are working only for single object
Figure[I3 shows some tracking results of a video frofiacking, we redesigned our experiments accordingly fe th
dataset 3 containing 3-4 persons. The people change tlagir stask: for a given person, all trackers were initialised naiyu
from time to time, occlusions occur, and head poses can ibehe first frame. Then, each time a failure was identified, th
challenging, as illustrated in the example. tracker was stopped and re-initialised using the first dietec
Finally, the average object purity (OP) over all thre§enerated by the face detector [1] for the tracked persdiedca

datasets is also higher with the proposed method, althOng‘f‘?ry 10 frames as in all experiments) after the failureainist
the identification algorithm is the same for all three conegar 1€sted algorithms were:

methods. We presume that this is because targets are dgnerals FragTrack “Fragment-based trackingl'[[8]. According to
tracked for a longer time with fewer interruptions. So, in a the method, a failure is detected if the objective function
video, there are fewer re-identifications and thus potentis- score is below a certain threshold (varied in different runs
identifications. The main errors are due to people wearing between0.02 and0.2).
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(e) frame 114948 (f) frame 114962 (g) frame 115148 (h) frame 115302

Fig. 13. Snapshots of multiple-object tracking result oradat 3. For each frame: different coloured rectangles reptefifferent identities. Purple rectangles
show the output of the face detectdiop: MCMC baseline bottom: proposed approach. With the baseline method, some targenhitiedised from false

detectiong I3[ ), and tracks are not maintained wie¢ections are missirjg_13[c). The proposed approach avdiks ifditialisations and maintains
good tracks longer. | f) tracking failures are deteaadier, and i I3(h), the lost target is re-initialisedliear(second person from the left).
data face RJ-MCMC | MCMC MCMC 1 T
set detection baseline | HMM1+2c e
recall 55.0% 89.5% 85.2% | 93.9% o5 | T . ]
1 FP rate 2.00% 20.75% 4.29% 1.45% / ,’% .
# interrupt. | — 861 395 112 k
average OP| — 41.35% 68.69% | 68.98% 06 - ]
recall 39.9% 75.7% 69.9% | 76.0%
2 FP rate 0.41% 3.27% 1.21% | 0.77% oal | ]
# interrupt. | — 2062 1004 567
average OP| — 49.09% 66.61% | 69.60%
recall 48.3% 77.2% 75.1% | 93.7% 027 FragTrack ——— |
3 FP rate 0.33% 18.2% 1.06% | 1.19% omerp i
# interrupt. | — 1299 455 166 0 . . ,__ Proposed (MCMC/HMM1+2¢) —=—
average OP| — 2796% 3423% 5746% 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
false positive rate
TABLE |

Fig. 14. Comparison with several state-of-the art trackilggrthms.
PERFORMANCE COMPARISON ON THE THREE DATASET§WITH A FIXED 9 p w

FACE DETECTOR THRESHOLD Olzl). )
get filtered out as well, so the advantage from our target

creation algorithm is not evident here, and the difference in
« OAB “Online Adaboost” [7]. Here, the tracking con-performance of our approach can be mostly attributed to the
fidence measure proposed by the authors for failut@rgetremoval(failure detection) algorithm.
detection is the number of (internal) detections, that we Figyre [12 shows the resulting curves. Our algorithm
thresholded with values betweénand 30. achieves the best performance in terms of precision andl,reca
« OMCLP: “Online Multi-Class LPBoost"[[10]. As with even if the tested state-of-the-art trackers have a more ad-
OAB, a threshold betweefi and 10 on the number of yanced appearance model than the proposed approach. Figure

detections was used as failure indication. [3 illustrates the results on one of the videos (only a sub-
As for our approach, we simply used our algorithniegion of the whole video is shown). For each tracker, the
(MCMC/HMM1+2c) allowing oneface track at most. best threshold for detecting lost tracks is selected acugrd

Data: we used 20 video clips of 5 minutes each (a randdfh the results shown in Fig. 1.4.
subset of our full dataset). As the videos contain severalOverall, these results show that (i) even these trackers fai
persons, we filtered out detections of the persons that dre on our seemingly easy scenario, due to pose changes, quick
supposed to be tracked. As a side effect, most false detsctishifts, partial occlusions by hands, etc; and (ii) the qoasbf
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when to start and stop tracking is pertinent as well for thetgad to false track initialisations if they occur consisken

trackers and becomes especially relevant with longer gidecand repeatedly, or which can also cause late removal of lost
tracks. The discriminative training of a classifier jointhking

D. Discussion into account the different observations could also helghia t

We h h that . d I of I ¢ regard. Finally, even if we are able to accurately and qguickl
€ have shown fnat precision and recail ot long-terfjaiq failures, the result is still dependent on the timakies

tracking is considerably _mcreased by using the prOpos?ogobtainanew face detection to reinitialise the trackifigus,
approach for target creation and removal. Our tracker oyf:

. ) X aving less tracking failures and better multi-view detesis

perfo.rms also_ state-of—thg—art single-object and muifeot obviously a way to increase the performance.
tracking algorithms, despite the fact that some of them use
more discriminative (multi-modal) appearance modelse&uj Computational time. The proposed algorithm runs in real-
the robustness of our tracking algorithm could probably bene, i.e. around20-23 frames/s (including video decoding)
improved using these appearance models (provided they watka resolution of640 x 360 pixels on an Intel PC at 3.16
in real time for multiple faces). Also, existing algorithmsuld GHz. Around9% of the processing is spent on frame decoding
largely benefit from our track creation and removal framéworand conversion27% on face detection (although run only
when applied on a longer time scale. once every 10 processed frame3)% on tracker likelihood
Other scenarios. Recently, we successfully tested our algomputatlon_,9% on the MCMC sampling steps_z% on

. . : . ta{get creation (because it is pixel-based but this could be
gorithm on video sequences acquired by a humanoid robot® . . . .

. . . . significantly reduced by processing grid-points only), é&ss

Nao in a Human-Robot Interaction scenario involving deerf’ﬁan 1% on target removal
people interacting with the robot. In this setting, the wide '
also contains fast camera motion due to the robot rotating
his head to address different persons. Although this is an VIl. CONCLUSIONS
adverse situation (since people’s position is changingkdyi
in the image domain) for the memory tracking cue, successfulWWe presented an on-line multi-face tracking algorithm that
tracking and track management is achieved. effectively deals with situations where detections are m@r

Furthermore, in this scenario, the track removal compone#iicertain. To achieve this, long-term observations from th
was exploited with another tracking algorithm that doestjoiimage and the tracker itself are collected and processed in a
head position and pose tracking using a different appearaf¢incipled way using two separate HMMs, deciding on when
model (multi-level HOG [[32]). The single main modificationto add andremovea target to the tracker.
was to change and relearn the decision thresheld df We evaluated our approach on more than 9 hours of videos
the sigmoid associated with the new tracker likelihagd With extensive annotation, and the results show that the pro
using a small training dataset. Results showed that that #@sed algorithm increases the performance considerally wi

parameters learnt from real data were not so sensitive If&spect to state-of-the-art tracking methods not using-lon
different environments. term observations and HMMs.

Other failure informative cues. We currently use seven
observations for failure detection. Others could be used as REFERENCES
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Fig. 15. Snapshots of a single-object tracking result. FedgTrack, green: OAB, blue: OMCLP, yellow: proposed appto Tracks of OAB and OMCLP
are maintained too long despite being [osi[(b]-(d); Fragdracnoves the target “too early”, {e).
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