
Modeling Engagement in a Multi-Party
Human-Robot Dialog

Masterarbeit

im Fach Intelligente Systeme
an der Technischen Fakultät
Universität Bielefeld

von : David Klotz
dklotz@techfak.uni-bielefeld.de

Artur-Ladebeck-Str. 89
33617 Bielefeld
GERMANY

Betreuer : Dipl.-Inf. Julia Peltason
Dr.-Ing. Britta Wrede

November 30, 2010

Contents

Abstract iii

1. Introduction 1

1.1. Motivation and Goals . 2
1.2. Overview . 2

2. Related Work 5

2.1. Levels of Understanding . 5
2.1.1. Communication as a Collaborative Effort 5
2.1.2. Usage in Human-Machine Dialog Systems 6

2.2. Engagement in Communication . 9
2.2.1. Definitions of Engagement . 10
2.2.2. Situated Multiparty Engagement 10

2.3. The PaMini Dialog System . 14
2.3.1. Interaction Patterns . 15
2.3.2. The Task State Protocol . 16
2.3.3. Interaction Management in PaMini 18

3. Scenario and Environment 19

3.1. The Humanoid Robot Nao . 19
3.2. The HUMAVIPS Project . 20
3.3. A Scenario for Multi-Party Interactions 21

3.3.1. An Example Dialog . 22

4. The Engagement Subsystem 25

4.1. Interaction Management . 25
4.2. Engagement Decisions . 26

4.2.1. Engagement State, Actions and Intentions 28
4.2.2. The Engagement Control Policy 30
4.2.3. Engagement Tasks . 31
4.2.4. The Engagment Process in Action 32

4.3. Scenario Configuration . 32
4.3.1. Connecting Nao and PaMini . 33

i

4.3.2. Speech Input Grammar . 34
4.3.3. Interaction Patterns . 34
4.3.4. Scenario-Specific Engagement Control Policy 36
4.3.5. Interfaces with the Real World . 38

4.4. Analyzing Interactions . 41
4.4.1. Data Collection . 41
4.4.2. Results . 43

5. Conclusion and Outlook 45

A. Speech Recognition Grammar 47

B. Recorded Interaction with the Engagement Subsystem 49

Bibliography 53

List of Figures 57

ii

Abstract

Giving a robot the ability to interact naturally with humans using natural language dialog
is an important goal of current research in human-robot interaction. Since most existing
dialog systems target telephone-based, single-user dialogs, they are not sufficient to solve
this challenge.

When a robot is situated in an environment containing multiple possible interaction
partners, it has to make decisions about when to engage specific users and how to detect
and react appropriately to actions of the users that might signal the intention to interact.

This thesis tries to adress this by extending an existing system for the management of
human-robot dialogs with new capabilities. This includes functions for managing multiple
interactions, each with one or more distinct participants, and for making engagement
decisions based on the actions and intentions of the present users and the current internal
state of the dialog system.

iii

1. Introduction

When we take the everyday interactions between people as a guide, a dialog based mostly
on spoken natural language arguably seems to be the most common and effective form of
communication. Yet, in the field of human-machine interaction, other modes of interaction
still prevail in many situations. Modern dialog systems are catching up, but interacting
with them is still missing the flexibility and fluidity that makes human face-to-face dialog
so efficient. From the perspective of a scientist or an engineer trying to create better
interactive systems, this makes the dialog between humans and machines an interesting
topic for more research, because there is still much room for improvements.

When the machine in question is a robot situaded in the physical world, a whole new
set of challenges arise, because dialogs with a robotic system “must be asynchronous,
mixed-initiative, open-ended, and involve a dynamic environment”[Lem+01]. The dialog
is asynchronous, because a robot will always have to attend to different tasks (those given
to it by the user or “background” tasks like obstacle avoidance), while still being able to
respond to or address the user.

When the interaction should extend beyond simple commands given by the user, it will
always be mixed-initiatve, because the robot may e.g. need to ask the user to perform
a task that the robot is unable to do. Mixed-initiative interaction is also needed as a
basis for learning in interaction with a user. E.g. in a scenario like the one described
in [Lüt+09], the robot can guide its own learning process by asking for missing pieces
of information, like how to grasp an unknown object. Another example would be the
home-tour scenario described in [Pel+09], where the robot optimizes it’s model about the
environment by explicitly asking the human interaction partner for information meant to
support or dismiss uncertain hypotheses.

In many of the future scenarios typically envisioned in research on human-robot in-
teraction, e.g. a robotic receptionist at the front desk of a public or corporate building
(see e.g. [BH09b]) or a robot assisting in the home (e.g. the robot companion Biron also
described in [Pel+09]), the interaction is open-ended. The robot is supposed to be running
continuously and the dialog needs to take this into account, for example by remembering
what it was told in previous conversations.

Contrasting it with a typical telephone-based dialog system, a robot is also situated in
a dynamic environment. On the one hand this presents new challenges to the dialog and
the robotic system as a whole, but on the other hand this environment (and the fact that
the robot is physically situated in it) can also provide “rich, relevant, streaming context

1

for the interaction”[BH09b]

Another challenge for the dialog component of a robotic system is that it may have
to deal with more than one interacting person, sometimes even at the same time. The
next section discusses some of the implications of that problem and how it was the most
important motivation in defining the goal set out for this thesis.

1.1. Motivation and Goals

One of the traditional areas where automated dialog systems have been used has always
been telephone-based dialog, e.g. for ordering tickets. In that domain, keeping track of
which users the system is talking to is not an issue. There is always just one user, the
interaction is one-to-one by design. While the telephone conversation is active, the user
on the other end is assumed to be engaged with the system. The interaction is opened by
placing the call and closed by simply hanging up the phone (cf. [BH09b, section 3.1]).

Comparing this with scenarios like those described in the last section, several important
differences spring to mind. If a robot is to be used e.g. as an assistant in the household, in
a lot of situations there will be multiple persons around, all of them potential interaction
partners for the system. This leads to another set of requirements for systems that should
be able to communicate with people in such an “open world” setting, because “participants
in a dialog must coordinate their actions to establish and maintain an open communication
channel.”[BH09b]

This process is commonly called engagement (cf. e.g. [Sid+04; BH09a; KH09] for differ-
ing but related definitions of the term in this context) and its integration into an existing
system for dialog management has been the focus of the work done for this thesis.

Initially I started out by looking at models of turn-taking behavior and how to inte-
grate them in human-robot dialogs, but quite early it became clear that a basic model
of engagement seems to be a prerequisite for such higher level dialog enhancements. To
put it simply: You first need to know who is there, who wants to interact with you and
who you are already talking to before you can start thinking about when exactly it is
appropriate to talk to them.

Therefore the goal of this thesis is to find a way to enable a robot to interact with
humans in situations containing multiple persons or groups by trying to integrate a model
of engagement (and the sensory functions it needs to make its decisions) into a dialog
system.

1.2. Overview

The next chapter will talk about related work in different areas, like the modelling of the
connection between participants in a dialog on different levels, the concept of engagement

2

and how these models are realized in different dialog systems for human-machine interac-
tion. It will also describe the existing dialog system that was used in the implementation
of this thesis.

The third chapter contains a description of the scenario serving as a testbed for the
system developed in this thesis and the organizational and technical environment in which
the work for this thesis was carried out. This provides an overview of the requirements
the system is trying to fulfill.

The fourth chapter describes the main work done for this thesis, the implementation
of the concept of multi-party engagement in a dialog system for human-robot interaction.
It gives a general description of how the process of interaction management had to be
changed to allow for different interactions with multiple participants, how the engagement
decisions are made in particular and what kinds of sensory processes contribute to these
decisions. This chapter will also give a short experimental evaluation of the realized
system by analyzing recorded interactions with the system.

The final chapter presents a short conclusion and tries to provide some ideas for en-
hancements to the system developed in this thesis and for future work that may be needed
in this area.

3

2. Related Work

This chapter gives an introduction to the main ideas and concepts having influenced the
work carried out for this thesis.

It starts with a section on different levels used in the literature to characterize how the
different participants in a dialog are connected. The section looks at the cognitive science
foundations of this perspective as well as at the use of these levels for different purposes
in several computer-based dialog systems.

The following section takes a look at the related problem of measuring or characterizing
the engagement of dialog participants with each other or more specifically with an artifical
dialog system, realized on a robot or as a virtual agent.

An existing dialog framework provides the practical foundations for the concepts real-
ized in this thesis. This framework is introduced in the last section of this chapter.

2.1. Levels of Understanding

In the literature there have been several efforts to model the connections between the
different participants in a dialog, from a purely linguistic or cognitive science perspective
as well as from the perspective of building a synthetic dialog system. Most of them sub-
divide these connections into a hierarchy of states, levels or layers, characterized mainly
by the progression from lower level information concerning the communication channel to
higher levels related to the semantic content of the dialog. This section tries to summarize
these important developments providing one of the core foundations of the ideas realized
in this thesis.

2.1.1. Communication as a Collaborative Effort

Clark and Schaefer [CS87; CS89] provide a theory of human communication as a collabo-
rative effort that is fundamental to most of the other efforts mentioned in the rest of this
section.

Their main argument is that a dialog or discourse is not made up of utterances made
by each of the participants in sequence, alternating according to some rules about when
it is their turn to speak, but of “collective acts performed by the participants working
together”[CS89]. These acts, called contributions by Clark and Schaefer, commonly consist
of two parts, a presentation and an acceptance. The first part consists of the specification

5

of the content of a contribution (i.e. what the speaker wants to add to the conversation) by
one participant and the second part is used “to establish the mutual belief that everyone
else has understood that content well enough”[CS87, pp. 19,21–22]. They argue that this
is intended to ensure the content becomes part of the mutual beliefs of all the participants,
a process that is called grounding (see [CS87, p. 20]).

Clark and Schaefer propose a hierarchy of states a participant has to go through to
accept a contribution:

• In the first state, the accepting participant B failed to notice that the presenting
participant A had uttered anything.

• In the second state, B did notice that A had said something, but did not correctly
hear what was said.

• In the third state, B correctly heard what A had said, but failed to understand the
content of the message.

• In the fourth and final state, B correctly heard and understood everything A had
said [see CS87, pp. 22–23].

2.1.2. Usage in Human-Machine Dialog Systems

Several authors have used at least some of the ideas presented by Clark and Schaefer
in realizing dialog systems for the communication between humans and machines. They
all used the proposed states in the process of grounding information (or similar concepts
inspired by them) in similar ways, but to somewhat different purposes.

Feedback for Discourse Repairs at Different Levels

Brennan and Hulteen [BH95] extend Clark and Schaefer’s model to make it usable in the
context of a dialog system for human-computer interaction. For this system, they make
explicit use of these different states of understanding from the original model describing
different types of feedback such a system could give at the respective levels. They split
the original final state into two distinct states, used to distinguish the problems arrising
at the levels of syntactical parsing and semantic interpretation, adding three additional
states on top of them that can be useful in a system to which users can delegate tasks.

They argue that problems in a dialog can arise in two different cases. The first occurs
when a participant fails to reach one of the states necessary e.g. for accepting a contri-
bution as grounded. That participant then has to give some kind of feedback as negative
evidence notifying the participant who gave the original presentation that a problem has
occured. The second case happens when a participant thinks to have reached such a
state, but the positive evidence given leads the original speaker to conclude the opposite.
They also argue strongly that this is one of the reasons a dialog system should not only

6

give negative evidence when an error has been detected, but also positive evidence when
everything seems to be going well [see BH95, p. 2].

They go on to provide examples for positive and negative feedback the system could
give at the different levels to facilitate discourse repairs and describe a dynamically chang-
ing grounding criterion that determines at what levels the system will give this kind of
feedback, depending on the dialog history, the physical environment and the nature of the
current task. By this they want to ensure possibly interruptive feedback being given only
when it is really necessary. This in turn is meant to reduce the required communicative
effort from both parties involved.

Levels of Analysis in the Quartet Architecture

Paek and Horvitz [PH00] describe an architecture for dialog systems (called Quartet)
that treats the process of grounding as action under uncertainty. It models some of the
uncertainties involved using Bayesian networks and it uses the expected utility and similar
probabilistic measures to make decisions based on that information.

The Quartet architecture analyzes the communication at four different levels, strongly
inspired by the states from [CS87]. The first level, the channel level, looks at behaviors a
speaker can execute to try to open a communication channel with a listener and at the
fact that the listener has to be attending to the speaker to perceive that behavior. The
next level is the signal level that tries to distinguish behaviors meant as communicative
signals from others. Following these two lower levels are the intention level, modeling the
core semantic content of the signals and the conversation level that looks at global goals
of conversation, like carrying out a joint activity with all the participants.

Figure 3. A simple Conversation Control for Quartet.

The design choice of maintaining distinct modules for
grounding, as opposed to constructing a single model, was
motivated by a number of factors. First, in building
Quartet, we found probabilistic dependencies to be
abundant within the proposed modules, but sparse between
them. This resonates well with the way people focus on
inferring and resolving uncertainties at one level before
considering other levels; in particular, psychologists have
noted that people try to ground understanding at lower
levels before moving to higher levels (Clark, 1996). In
regards to both psychology and efficiency, building models
for distinct modules lends itself to the objective of
diagnosis at specific levels. Second, we found that
modularity enhances the flexibility of Quartet to be applied
to variety of task domains. Since the intention level is
where meaning and understanding is coordinated for a
particular joint activity, adapting the architecture to new
tasks involves nothing more than modifying or exchanging
only the Intention Module. The Presenter and Bayesian
Receptionist dialog systems employ different Intention
Modules while working within the same overall
architecture. Quartet also provides an interface to allow
other dialog systems to take advantage of grounding
information, as most current systems do not employ
probabilistic methods. Finally, we found that the beliefs,
decisions, and degree of detail necessary for each level
varied significantly depending on the communication
medium or modality. For example, not all systems have
access to vision, or even spoken input. Maintaining
modules with more appropriate network structures for
different circumstances makes it possible to get the most
out of multimodality. Along the same vein, modularity has
also been conducive to exploring methods for dynamically
switching modules, and even modifying dependencies on
the fly with shifts in modality or communication context.
For example, if the signal level continually suffers from
ASR errors, the system may ask the user to use typed input
and then dynamically change its Maintenance Module to
reflect this new modality of interaction.

Figure 4. A partial breakdown of possible repair and non-
repair grounding strategies in Quartet.

2.2.2 Representations for Decision Making

Figure 2 and Figure 3 display portions of the Bayesian
models for the Maintenance Module and the Conversation
Control respectively. Both networks were initially hand-
crafted to take into account variables researchers have
identified as being significant in establishing mutual
understanding. We have been extending the initial models
with user data to learn the parameters and structure of the
models.

In the Maintenance Module, beliefs about channel fidelity
are captured in the node “User’s Focus of Attention,”
which keeps track of whether the user is attending to the
dialog system, another person, or to anything else. For
beliefs about the signal level, the node “Signal Identified”
summarizes information from the ASR engine and the
natural language parser into high, medium, and low
confidence states. The “Maintenance Status” node
integrates channel fidelity, signal identification, and its
own distribution in the previous time slice to obtain a
probability distribution over four grounding states: NO
CHANNEL, CHANNEL BUT NO SIGNAL, SIGNAL BUT NO

CHANNEL, and finally, CHANNEL AND SIGNAL. As we
demonstrate later, SIGNAL BUT NO CHANNEL is particularly
useful for distinguishing overheard speech from utterances
directed at the dialog system.

In the Conversation Control displayed in Figure 3, the
“Maintenance Status” node reappears, and is modified to
reflect historical performance, as noted in the dialog
record. The “Intention Status” node simply conveys how
well the “meaning” of the signal was understood, and is
also modified by historical performance. “Intention Status”
and “Maintenance Status” influence both “Activity Goal,”
which diagnoses whether the user is participating in a joint
activity with the system, another person, or doing
something else, and “Grounding Status,” which diagnoses
the overall mutual understanding in fives states: OKAY,

No repair

Other Repairs

Wait for further information before deciding

Do conditionally relevant action

Give positive feedback (acknowledgment)

In a general way

Specify grounding level

Grounding Strategy Decomposed

Display confusion (to elicit user-initiated repair)

Confirm understanding

Seek clarification
In a general way

Specify grounding level

Declare intention before action

Assume speech is overheard and ignore

…

Consider combinations of repair actions

No repair

Other Repairs

Wait for further information before deciding

Do conditionally relevant action

Give positive feedback (acknowledgment)

In a general way

Specify grounding level

Grounding Strategy Decomposed

Display confusion (to elicit user-initiated repair)

Confirm understanding

Seek clarification
In a general way

Specify grounding level

Declare intention before action

Assume speech is overheard and ignore

…

Consider combinations of repair actions

Conversation Control

Maintenance

Status

Maintenance

History

Intention Status

Intention

History

Grounding

Status (t-1)

Utility

Grounding

Strategy

Grounding

Status (t)
Activity Goal

Dialog

Record

Maintenance

Status

Maintenance

History

Intention Status

Intention

History

Grounding

Status (t-1)

Utility

Grounding

Strategy

Grounding

Status (t)
Activity Goal

Dialog

Record

Figure 2.1.: A partial breakdown of possible repair and non-repair grounding strategies in
Quartet. [taken from PH00, p. 4]

Information from all of these levels is used to make decisions about the actions the

7

system should take in a dialog, for example whether the system should try to initiate
a repair or not. One interesting case happens when the system detects a signal at the
signal level (e.g. a result from a speech recognition subsystem) without detecting an open
communication channel at the lowest level. The system will then assume that the signal
was not directed at itself and ignore it at the higher levels. Figure 2.1 shows the author’s
classification of the different grounding strategies used in the Quartet architecture.

Multi-Party Conversations with Virtual Agents

Traum and Rickel [TR02] present an information state approach as a model for a dialog
system capable of holding conversations with more than two participants. Although the
concept of a multi-party conversation in general could also extend to other possible con-
figurations, the examples they present seem to be limited to situations where one human
interaction partner is talking to multiple virtual agents in a simulated military training
exercise.

Their system is structured in several dialog management layers and knows a set of
actions that can change the information defining the state of each layer. The lower levels
of the model are again focused on the establishment of communication channels between
the participants. There is a contact layer keeping track of which agents can be reached,
depending on the medium of communication (since the simulation includes messages sent
via radio) and a layer that manages the attention state of all involved participants in
regard to each other. There are also higher level layers for information regarding the
current conversations (which is taken to encompass tasks like grounding information and
turn-taking), social commitments and negotiations between the participants.

Another emphasis of their model is the management of multiple conversations, each
with several different participants and possibly overlapping in time. Such a conversation
can be opened or closed explicitly (with direct verbal or non-verbal cues) or implicitly (e.g.
just by the direction or lack of attention). An example they provide of non-verbal cues
for opening a conversation is the process of distance and close salutations that is made
up of several steps like first gazing for a prolonged time and then approaching the other
participant directly. The state of a participant in a conversation can also be changed, e.g.
from passively overhearing it to actively participating in it.

Most of the lower level efforts could be summarized by the conclusion that “agents must
reason about who they are talking to, who is listening, and whether they are being ad-
dressed or not”[TR02, section 2], leading to the concept of engagement in communication
that is the focus of next section.

8

2.2. Engagement in Communication

If we take a closer look at the lower levels of the models presented in the previous section
and related efforts, some similarities emerge to form something like a “least common
denominator” for the handling of the communication channels in a dialog. This always
includes ways to open and close these channels, and several authors emphasize the fact
that this may happen using verbal cues (like greetings) or non-verbal behavior (often
connected to the way mutual attention is signalled between the participants). In some
models, which are rooted in a mixed-initiative mode of interaction, the system may also
actively try to open such a communication channel by itself.

As an example, Bohus and Horvitz [BH09b] define several levels of core competencies
for holding dialogs in the “open world” (see figure 2.2), which they take as a dynamic
environment in which the dialog system is situated. In this open-world setting, people
may enter or leave the conversation at any time and the dialog system has to cope with
the various verbal and non-verbal signals meant to control the opening, closing and man-
agement of the required communication channels. They situate the process responsible
for this at the lowest level of their hierarchy and call its area of resposibility engagement.

3.1. Situated Multiparty Engagement

As a prerequisite for interaction, participants in a dialog

must coordinate their actions to establish and maintain an

open communication channel. In single-user systems this

problem is often solved in a trivial manner. For instance, in

telephony-based spoken dialog systems the channel is as-

sumed to be established once a call has been received.

Similarly, multimodal mobile applications oftentimes re-

solve the channel problem by using a push-to-talk solution.

Although these solutions are sufficient and perhaps

natural in closed, single-user contexts, they become inap-

propriate for systems that must operate continuously in

open, dynamic environments. We argue that such systems

should ideally implement a situated multiparty engagement

model that allows them to fluidly engage, disengage and

re-engage in conversations with one or more participants.

Observational studies have revealed that humans negoti-

ate conversational engagement via a rich, mixed-initiative,

coordinated process in which non-verbal cues and signals,

such as spatial trajectory and proximity, gaze and mutual

attention, head and hand gestures, and verbal greetings all

play essential roles [2, 3, 14]. Successfully modeling this

coordinated process requires that the system (1) can sense

and reason about the engagement actions, state and inten-

tions of multiple agents in the scene, (2) can make high-

level engagement control decisions (such as whom to en-

gage with and when), and (3) can render engagement deci-

sions in low-level coordinated behaviors and outputs.

Models for sensing the engagement state, actions, and

intentions of various agents in the scene are, to a large ex-

tent, predicated on the system’s capabilities to understand

the physical environment in which it is immersed, i.e. to

detect, identify and track multiple agents, including their

location, trajectory, focus of attention, and other engage-

ment cues. Higher-level inferences about the long-term

goals, plans and activities of each agent can also provide

informative priors for detecting engagement actions.

Beyond the engagement sensing problem, at a higher

level, the system must reason about the boundaries of each

conversation and make real-time decisions about whom to

engage (or disengage) with, and when. In a dynamic multi-

party setting these decisions have to take into account addi-

tional streams of evidence, and optimize tradeoffs between

the goals and needs of the multiple parties involved (e.g.,

interrupting a conversation to attend to a more urgent one).

In making and executing these decisions, the system must

consider social and communicative expectations and eti-

quette. Finally, such high-level engagement decisions must

be signalled in a meaningful, understandable manner to the

relevant participants. For instance, in an embodied anthro-

pomorphic agent, engagement actions have to be rendered

into a set of corresponding behaviors (e.g., establishing or

breaking eye contact, changing body posture, generating

subtle facial expressions, or issuing greetings) that must of-

ten be coordinated at the millisecond scale.

3.2. Situated Multiparty Turn Taking

Going one level up in Clark’s model, at the Signal level,

the system must coordinate with other participants in the

conversation on the presentation and recognition of com-

municative signals (both verbal and non-verbal, e.g., ges-

tures and emotional displays.) The coordinated process by

which participants in a conversation take turns to signal to

each other is known as turn-taking and has been previously

investigated in the conversational analysis and psycholin-

guistics communities, e.g. [12, 18]. While computational

models for turn-taking [19, 23, 24] have also been pro-

posed and evaluated to date, most current systems make

simplistic one-speaker-at-a-time assumptions and have re-

lied on voice activity detectors to identify when the user is

speaking. Phenomena like interruptions or barge-ins are of-

ten handled using ad-hoc, heuristic solutions, which can

lead to turn-overtaking issues and ultimately to complete

interaction breakdowns even in single-user systems [6].

Open-world dialog requires the development of a com-

putational, situated multiparty turn-taking model. On the

sensing side, such a model should be able to track the

multi-participant conversational dynamics in real time by

fusing lower-level evidence streams (e.g., audio and vis-

ual). The model should be able to identify the various

communicative signals as they are being produced, and, in

a multi-participant setting, identify the sender, the address-

ees (and potentially the over-hearers) for each signal. In

addition, the model should be able to track who has the

conversational floor, i.e., the right to speak, at any given

point in time. On the control side, a multiparty situated

turn-taking model should make real-time decisions (that

Situated multiparty engagement
! track engagement state, actions, intentions

! make engagement decisions

! render & coordinate engagement behaviors

Channel

Situated multiparty turn-taking
! track multi-participant conversation dynamics

! manage floor and coordinate outputs
Signal

Situated multiparty intention recog.
! multi-modal fission and fusion

! situated natural language understanding

Intention

Situated multiparty dialog management
! roles, intentions, capabilities

! multi-party discourse understanding

! multi-party interaction planning

Conversation

Figure 3. Core competencies for open-world dialog

S
it

u
a
ti

o
n

a
l

A
w

a
re

n
e
s
s

G
ro

u
n

d
in

g

M
ix

e
d

-

In
it

ia
iv

e

L
e
a
rn

in
g

In
te

g
ra

ti
o

n

Figure 2.2.: Core competencies for open-world dialog [taken from BH09b, p. 4]

The next sections will first compare several definitions of engagement in communication
and then take a closer look at how Bohus and Horvitz define their process of situated
multiparty engagement, a definition having influenced the work carried out for this thesis

9

to a great degree.

2.2.1. Definitions of Engagement

In the context of modelling dialogs, engagement is defined in somewhat varying ways.
Some authors think of it as a process involving rules on how communication channels
are managed. One example of this is the definition from Sidner et al. [Sid+04], who
see engagement as “the process by which two (or more) participants establish, maintain
and end their perceived connection”. According to their definition, this process not only
includes the initial contact and beginning of a collaboration, but also functions to evaluate
whether to stay involved or when a conversation should be ended.

This can be contrasted with the view of Peters et al. [Pet+05], who see enagement
mainly as a motivating force or a measure of how well a system manages to captivate the
users interest. For them, this measure could be defined as “the value that a participant in
an interaction attributes to the goal of being together with the other participant(s) and
of continuing the interaction”. They also assert that engagement is strongly linked to the
interest a participant has in the topic being discussed and see this as a cause for attention
the user might give to the system.

Kok and Heylen [KH09] look at engagement in the context of turn-taking in a dialog.
They define knowing the rules of engagement as the “knowledge of when it is appropriate
or desired to say something”. To implement these rules in a dialog system on a robot or
a computer, they insist that the system should be given at least the skills to recognize
when it is being addressed and to detect when the speaker wants to hand over the turn
to the system.

Bohus and Horvitz [BH09b; BH09a] adopt Sidner et al.’s notion of seeing engagement as
a process. They extend it with capabilities they deemed necessary for dealing with multi-
party interactions in an open-world environment. Since they, like Traum and Rickel,
also allow for multiple open interaction with multiple participants each, they additionally
characterize engagement as “the process subsuming the joint, coordinated activities by
which participants initiate, maintain, join, abandon, suspend, resume, or terminate an
interaction”. This implies that on top of the basic management of communication chan-
nels, they also see higher-level questions like who is taking part in the same interaction or
when the system should actively engage a person as part of the engagement process. The
next section will take a closer look at how they think this process should be structured.

2.2.2. Situated Multiparty Engagement

The model of situated multiparty engagement described by Bohus and Horvitz [BH09a;
BH09b] can be characterized as consisting of three main functional parts. The first is
concerned with sensing the environment of the system to gather knowledge about the
potential interaction partners that can be detected in the scene. It uses this information

10

to decide if one of them is already interacting with the system (their engagement state),
if somebody wants to start or leave an interaction (their engagement actions) and to try
to correctly guess their engagement intention (i.e. if they might want to interact with
the system without yet having actively engaged it). The second part uses this sensory
information and combines it with higher level information (like the current state or goals
of the dialog) to make decisions about when the system should try to engage or disengage
with one of the users. These decisions are then realized into behaviors (like gestures,
the making and breaking of eye contact or verbal greetings) by the third part of the
engagement system.

The next sections will explain the different parts of this engagement model in more
detail.

Engagement State, Actions and Intentions

The concept of an interaction takes a central place in Bohus and Horvitz’s model of
engagement [BH09a]. They define an interaction as “a basic unit of sustained, interactive
problem-solving” by the system and one or more other participants, which the authors
designate as agents. It is important to note that the agents do not engage with the system
in general, but engage (or become engaged in) a specific interaction. The configuration
of which users are engaged in an interaction also is dynamic, since they can join or leave
an interaction at any moment. The system itself can also only actively take part in one
current interaction, but there can be several suspended interactions beside it. This can
be used e.g. for modelling side-interactions subsuming, but afterwards returning to, the
currently active interaction. This notion of an interaction can be compared quite closely
to the information managed at the “conversation” layer of the system from Traum and
Rickel [TR02] already partly described in section 2.1.2.

The engagement state, actions and intentions are modelled as a system of variables and
probabilities that the system tries to keep updated for all the agents in all interactions.
Some of them are infered using sensory input taken directly from the scene surrounding
the system, while some of them are updated only in reaction to actions taken by the
agents or the system.

!!"#$%!&'&%() %!&'&%()

*+,(-.%!&'&%)/)
0*+,(-.%!&'&%)

!"#$%&'()!"#$%$&'&#(!)(%(&!(*%#)+(+,#!-+%$*%'.!"/!+)!(0&!

!"#$%&'(#$"!"#)#$%(!*%+,$-(./0(+'(%1#('2'%#)&'(!*%+,$3!

*+,1'-!#'-!)2)
0*+,1'-!#'-!)

*+,%!&'&%)2)
0*+,%!&'&%)

*+,!"$'3#-"!)/)
0*+,!"$'3#-"!)

!"#$%&'*)!1*%20+3%4!',-&4!)0,5+#$!6&7!8%*+%94&)!%#-!

-&2&#-+&)!+#!'%#%$+#$!&#$%$&'&#(.!

*0)

*+)

*4)

#)))#56)

0*+)

*0)

!)

*4)

+)

")

'
(
(
-#
-"
!
'
7)

3
"
!
#%
8
#)

%
!
&
'
&
%
1
%
!
#)

.
%
!
.
-!
&
)

")

9)

+)

9)

*+)

0*:)

!)

%3(+,#)! %#-! +#(&#(+,#)! ,:! ';4(+24&! %$&#()! +#! (0&!)3&#&<!

=>?!'%6&)!0+$0@4&8&4!&#$%$&'&#(!3,#(*,4!-&3+)+,#)!=!"#"!

%9,;(! 50,'! (,! &#$%$&! ,*! -+)&#$%$&! 5+(0<! %#-! 50&#?!

%#-!=A?!&B&3;(&)!%#-!)+$#%4)!(0&)&!-&3+)+,#)!(,!(0&!,(0&*!

2%*(+3+2%#()!+#!%#!%22*,2*+%(&!%#-!&B2&3(&-!'%##&*!=#"$"!

&#-&)! (0&'! +#! %!)&(! ,:! 3,,*-+#%(&-!9&0%8+,*)!);30! %)!

$&)(;*&)<!$*&&(+#$)<!&(3.?.!C0&!2*,2,)&-!',-&4!);9);'&)!

(0&)&! (0*&&! 3,'2,#&#()<!50+30!5&!-+)3;))! +#!',*&!-&@

(%+4!+#!(0&!:,44,5+#$!);9)&3(+,#).!

+),! -.#/#&0&.1'21/1&3'451"6.73'8.1&.1"6.7'

/)!%!2*&*&D;+)+(&! :,*!'%6+#$! +#:,*'&-!&#$%$&'&#(!-&@

3+)+,#)<!%!)7)(&'!';)(!9&!%94&!(,!*&3,$#+E&!8%*+,;)!&#@

$%$&'&#(! 3;&)<! %#-! (,! *&%),#! %9,;(! (0&! &#$%$&'&#(!

%3(+,#)!%#-!+#(&#(+,#)!,:!*&4&8%#(!%$&#()!+#!(0&!)3&#&.!C,!

%33,'24+)0! (0+)<! (0&!)&#)+#$!);93,'2,#&#(! ,:! (0&! 2*,@

2,)&-!&#$%$&'&#(!',-&4!(*%36)!,8&*!(+'&! (0*&&!*&4%(&-!

&#$%$&'&#(!8%*+%94&)!:,*!&%30!%$&#(!#!%#-!+#(&*%3(+,#!$F%

(0&! &#$%$&'&#(!)(%(&!%&#
$!'" <! (0&! &#$%$&'&#(! %3(+,#!

%(#
$!'"!%#-!(0&!&#$%$&'&#(!+#(&#(+,#!%)#

$!'".!!

C0&! &#$%$&'&#(!)(%(&<!%&#
$!'"<! 3%2(;*&)! 50&(0&*! %#!

%$&#(!#!+)! &#$%$&-! +#! +#(&*%3(+,#!$!%#-! +)!',-&4&-! %)! %!
-&(&*'+#+)(+3! 8%*+%94&! 5+(0! (5,! 2,))+94&! 8%4;&)F! #&'

$($#)! %#-!&*+'#&$($#).!C0&!)(%(&! +)! ;2-%(&-! 9%)&-! ,#!

(0&!G,+#(!%3(+,#)!,:!(0&!%$&#(!%#-!(0&!)7)(&'!=)&&!H+$;*&)!

A! %#-! I?.! J+#3&! &#$%$&'&#(! +)! %! 3,44%9,*%(+8&! 2*,3&))<!

(0&!(*%#)+(+,#)!(,!(0&!#&$($#)!)(%(&!*&D;+*&!(0%(!9,(0!(0&!

%$&#(!%#-!(0&!)7)(&'!(%6&!&+(0&*!%#!#&$($#!%3(+,#!=+:!(0&!

%$&#(!5%)!2*&8+,;)47!#,(!&#$%$&-?!,*!%!,(!&+(!&!%3(+,#!

=+:! (0&! %$&#(! 5%)! %4*&%-7! &#$%$&-?K! 5&! -+)3;))! (0&)&!

%3(+,#)!+#!',*&!-&(%+4!)0,*(47.!L#!(0&!,(0&*!0%#-<!-+)&#@

$%$&'&#(!3%#!9&!%!;#+4%(&*%4!%3(F!%#!%$&#(!(*%#)+(+,#)!(,!

(0&!&*+'#&$($#)!)(%(&! +:! &+(0&*! (0&! %$&#(! ,*! (0&!)7)(&'!

(%6&!%!)!-#&$($#!%3(+,#!,*!%!&*'(.+!*&.!

C0&!)&3,#-!&#$%$&'&#(!8%*+%94&<!%(#
$!'"<!',-&4)!(0&!

%3(+,#)!(0%(!%#!%$&#(!(%6&)!(,!+#+(+%(&<!'%+#(%+#!,*!(&*'+@

#%(&! &#$%$&'&#(.! C0&*&! %*&! :,;*! &#$%$&'&#(! %3(+,#)F!

#&$($#<! &*'(.+!*&<!,(!&+(!&<!)!-#&$($#.! C0&! :+*)(! (5,!

%*&!2,))+94&!,#47!:*,'!(0&!&*+'#&$($#)!)(%(&<!50+4&!(0&!

4%)(! (5,!%*&!2,))+94&!,#47! :*,'! (0&!#&$($#)!)(%(&.!C0&!

&#$%$&'&#(!%3(+,#)!%*&!&)(+'%(&-!9%)&-!,#!%!3,#-+(+,#@

%4!2*,9%9+4+)(+3!',-&4!,:!(0&!:,*'F!
!

*!%(#
$!'"#%&#

$ +',$%(#
$ +' - %,$ &%(#

$ +' - %,$!!'""!
!

C0&! +#:&*&! +)! 3,#-+(+,#&-! ,#! (0&! 3;**&#(! &#$%$&@

'&#(!)(%(&<! ,#! (0&! 2*&8+,;)! %$&#(! %#-!)7)(&'! %3(+,#)<!

%#-!,#!%--+(+,#%4!)&#),*7!&8+-&!!!&".!!+&,!+#34;-&)!
(0&!-&(&3(+,#!,:!&B24+3+(!&#$%$&'&#(!3;&)!);30!%)F!)%4;@

(%(+,#)! =#"$"! 45+678(492#(:2#7;-(*!<<+$"(:#1!=+,>'(?#"$"!

4@!A>!67;-(%1#(#'%!:<+'1)#$%(,>(%1#! 9*&%6+#$! ,:! %#! H@

:,*'%(+,#! =M&#-,#<! NOOP9?<! !"#"! (0&! %$&#(! %22*,%30&)!

%#-!2,)+(+,#)!0+')&4:!+#!:*,#(!,:!(0&!)7)(&'!%#-!%((&#-)!

(,! (0&!)7)(&'K! %#! &B2&3(&-<! ,2&#+#$! -+%4,$!',8&! =#"$"!

4B,)#(1#>#67;3(C,%#(%1!%(#!*1(,D(%1#'#(*A#'(+'(#EF<+*+%8(

%#-!'%*6)!%!3,''+((&-!&#$%$&'&#(!%3(+,#.!!

/! (0+*-! 8%*+%94&! +#! (0&! 2*,2,)&-! ',-&4<! %)#
$!'" <!

(*%36)!(0&!&#$%$&'&#(!+#(&#(+,#!,:!%#!%$&#(!5+(0!*&)2&3(!

(,!%!3,#8&*)%(+,#.!Q+6&!(0&!&#$%$&'&#(!)(%(&<!(0&!+#(&#@

(+,#! 3%#! &+(0&*! 9&! #&$($#)! ,*! &*+'#&$($#).! R#(&#(+,#)!

%*&!(*%36&-!)&2%*%(&47!:*,'!%3(+,#)!)+#3&!%#!%$&#(!'+$0(!

+#(&#-! (,! &#$%$&! ,*! -+)&#$%$&! (0&!)7)(&'<! 9;(! #,(! 7&(!

(%6&!%#!&B24+3+(!&#$%$&'&#(!%3(+,#.!H,*! +#)(%#3&<! 4&(!;)!

3,#)+-&*! (0&! 3%)&! +#! 50+30! (0&!)7)(&'! +)! %4*&%-7! &#@

$%$&-! +#!%#! +#(&*%3(+,#!%#-!%#,(0&*!%$&#(! +)!5%+(+#$! +#!

4+#&! (,! +#(&*%3(!5+(0! (0&!)7)(&'.! !/4(0,;$0! (0&!5%+(+#$!

%$&#(!-,&)!#,(! (%6&!%#!&B24+3+(<!3,''+((&-!&#$%$&'&#(!

%3(+,#<!)0&!'+$0(!)(+44!+#(&#-!(,!&#$%$&!+#!%!#&5!3,#8&*@

)%(+,#!5+(0!(0&!)7)(&'!,#3&!(0&!,22,*(;#+(7!%*+)&).!J0&!

'+$0(!%4),!)+$#%4!(0+)!&#$%$&'&#(!+#(&#(+,#!8+%!8%*+,;)!

3;&)! =#"$"! 2%3+#$! %*,;#-<! $4%#3&)! (0%(! '%6&! 9*+&:! 9;(!

34&%*!&7&!3,#(%3(!5+(0!(0&!)7)(&'<!&(3.?!S,*&!$&#&*%447<!

(0&! &#$%$&'&#(! +#(&#(+,#! 8%*+%94&! 3%2(;*&)! 50&(0&*! ,*!

#,(!%#!%$&#(!5,;4-!*&)2,#-!2,)+(+8&47!)0,;4-!(0&!)7)(&'!

+#+(+%(&! &#$%$&'&#(.! R#! (0%(!)&#)&<! +(! *,;$047! 3,**&)@

F,$G'(%,(H#%#>'&(=>PPTK! >PPT9?! 4+$%#>#'%(<#=#<78(!"#"! (,!

(0&!8%4;&!(0&!%$&#(!%((%30&)!(,!9&+#$!&#$%$&-!+#!%!3,#@

8&*)%(+,#!5+(0!(0&!)7)(&'.!!

Q+6&!&#$%$&'&#(!%3(+,#)<!&#$%$&'&#(! +#(&#(+,#)!%*&!

+#:&**&-!9%)&-!,#!%!-+*&3(!3,#-+(+,#%4!',-&4F!
!

227

Figure 2.3.: Engagement state transition diagram. EA is the agent’s engagement action;
SEA is the system’s action. [taken from BH09a, figure 2]

11

The enagement state of each agent in each interaction is modelled as a discrete variable,
ESi

a(t) (where a denotes the agent, i the interaction and t the current timestep), which can
take only two distinct values, engaged or not-engaged. The current state can be changed
by the agent’s actions described next or by actions taken by the system itself. Figure
2.3 shows a visualization of the state space and the actions possible for one agent in one
interaction. When agents try to engage the system, they don’t change automatically to
the engaged state, since the system first has to respond positively to their request by also
engaging them in return. Disengaging, in contrast, can be a unilateral action that either
the agent or the system can take by themselves. If one side of an interaction wants to
leave, there’s usually not much the other side can do to stop it.

The actions an agent can perform in regard to the engagement system are modelled with
the variable EAi

a(t), which can take one of the four values engage, no-action, disengage
and maintain. Which one of these actions an agent can really take depends on their current
engagement state. While the agent is in the engaged state, the only possible actions are
to disengage from the current interaction or to maintain their current engagement with
the system. When the agent is not currently engaged (i.e. in the not-engaged state),
it is possible to engage the system or to take no-action. Of course, the restrictions
mentioned in the last paragraph (and visible in figure 2.3) apply to all tries to change
an agents state by taking one of these actions. Which action an agent tries to take is
estimated from a conditional probabilistic model of the form P (EAi

a(t)|ESi
a(t), EAi

a(t−
1), SEAi

a(t − 1),Ψ(t)). This model takes into account the current engagement state of
the agent, the last engagement action which both the agent and the system have taken
and some “additional sensory evidence”, Ψ(t). This additional evidence Ψ(t) is used to
take detection results into account, e.g. for explicit engagement cues like salutations (e.g.
“Hello!” or “Good bye!”) or for directly approaching and attending to the system.

Apart from the engagement state and the possible engagement actions, the model also
introduces a third variable, the engagement intention, EIi

a(t). Like the engagement state,
this variable can have the two values engaged or not-engaged for each agent. This intention
is modelled separately from the engagement actions since someone can have the aim of
engaging the system without yet taking any actual actions, e.g. when standing in a line
waiting to interact with a receptionist. In general, this variable is also used as an estimate
if an agent would respond positively if the system should try to engage them. This
variable is again modelled as a conditional probabilistic model, this time of the form
P (EIi

a(t)|ESi
a(t), EAi

a(t−1), SEAi
a(t−1), EIi

a(t−1),Ψ(t)). This means that the current
intention of an agent is conditioned on the current engagement state of the agent, the
previous actions by both the agent and the system, the agent’s previous intention and
again a variable for “additional evidence”, Ψ(t). In this case, this evidence could include
more implicit cues for engagement, like sustained attention to the system.

12

Engagement Decisions

Based on these models and other information, the engagement control policy is able to
make high-level decisions about which users to engage or disengage in specific interactions.
The range of actions the system can take consists of the same four actions that a user
can take as an engagement action (described in the last section). Together with the user’s
action they control the engagement state as shown in figure 2.3. This decision is termed
the system engagement action (or SEA) in this context. The actual surface realization of
the SEA is controlled by lower-level engagement behaviors, which are described in more
detail in the following section.

Bohus and Horvitz [BH09a] define the system engagement action as a function of the
form πSEA({Ei

a}a,i, {Ha}a,Γ). This means that the decision is based on the engagement
state, action and intention E of all agents in all interactions, on high-level information H

about all agents (such as an agent’s long-term goals) and on other global context Γ (like
the history or the current state of the interaction).

This definition is kept intentionally broad and abstract by the authors, because the
real rules used for the SEA can be quite specific to an application or a scenario. The
receptionist scenario in [BH09b] includes the example of queue management, where the
virtual receptionist system suspends the interaction with the current user to engage a
user waiting in line to tell them they will be “attended to shortly” or even handles their
request while the current user fills out a form. Another example comes from the trivia
game scenario of [BH09a], where the system engages a bystander and asks him to help
the current player when he is not doing well in the game.

Engagement Behaviors

The higher-level engagement decisions (i.e. system engagement actions like engage or dis-
engage) have to be rendered into real actions by the virtual or robotic embodied agent
representing the dialog system. Bohus and Horvitz [BH09a] describe a lower-level behav-
ioral control policy for this in the form of πSEB(SEA, {Ei

a}a,i,Ψ). This function takes
the higher-level decision, the current engagement information for all agents and another
additional evidence variable. In this case, the additional evidence is comprised of other
information that was extracted from the scene and could be important for the action
realization. This function is then used to sequence a series of actions meant to realize the
higher-level engagement goal.

For example, the engage system action is realized in [BH09a] as a series of three sub-
behaviors. The first of them tries to establish the attention of the user that should be
engaged (for example by looking in his direction and waiting whether his focus of attention
is also on the system and maybe calling out to him). The second optionally greets the
user with a message that can be specified as a parameter to the engage-action. Finally,
the last sub-behavior monitors if engaging the user really succeeded. It is important to

13

note that any of these sub-behaviors can fail (e.g. if the user doesn’t react or just walks
away) which would also be signalled to the higher-level engagement control system.

In contrast to the higher-level engagement control policy, these lower-level engagement
behaviors often can be re-used across different settings and scenarios. The authors also
have the idea that some of these behaviors in the future might be learned, e.g. from a
corpus of human-human interactions.

2.3. The PaMini Dialog System

Bringing together dialog modelling and interactive robotics never is an easy task. On the
one hand, there is the software-engineering challenge of integrating the dialog management
with the diverse and often asynchronous subsystems of a typical robotic system (like
gestures, other movements or navigation). The dialog may need to delegate tasks to
them, some of which may take a long time to complete, some could fail or may be in need
of more specific instructions. Some of those sub-systems may even want to delegate tasks
to the dialog management system themselves, for instance when a component wants to
inform the user about an event or the system’s state (e.g. “My battery is nearly empty,
i need to recharge!”) or needs some information from a human interaction partner (e.g.
“Is this the living-room?”).

On the other hand the dialog model itself needs to be flexible, to support the diverse
and often long-running interactions a robotic system could perform in such a scenario. It
also needs to make use of being situated on a robot in the real world. It needs to know
some things about the environment (including the robotic system itself) and it needs to
make use of this information when interacting with a human partner.

Based on the experiences made with previous efforts to build dialog systems for robots
(see e.g. [LW07]) and the requirements learned from implementing several human-robot
interaction scenarios (see e.g. [Pel+09] or [Lüt+09]), Peltason and Wrede [PW10] have
developed an approach to modeling the dialog with an interactive robot. A framework
based on this approach has the goal of making it easier to model dialog situations and to
integrate that dialog with the rest of the robotic system. This framework, called PaMini
(which is short form “Pattern-based Mixed-Initiative Interactions”) forms the basis for
implementing the ideas presented in this thesis.

As an approach to satisfying these diverse needs, the PaMini framework combines a col-
lection of generic interaction patterns with an abstracted interface to submit and receive
tasks to and from different components in a robotic architecture. The interaction patterns
have the goal of encapsulating typical interactions into configurable “building blocks for
human-robot interaction”[PW10]. They are described in more detail in the following sec-
tion. The task state protocol, which is detailed in section 2.3.2, provides an abstraction
of the interactions between the dialog manager and other components using a general set
of states and transitions for delegated tasks.

14

There are flexible interfaces for plugging in different modules for input and output
into the dialog framework. Since the main dialog engine is agnostic to the specific type
of in- or output used, this makes it easy to realize multimodal interactions, using e.g.
gestures instead of (or in addition to) the speech modality. Existing modules include
one for receiving input from the HMM-based speech recognition engine ESMERALDA
(see [Fin99]) and one for sending speech output to the speech synthesizer MARY (see
[DFK10]). While the former was also used for the speech input in the scenario realized
for this thesis, the latter was replaced by the the built-in speech synthesis engine of the
robotic platform used, described in section 3.1.

2.3.1. Interaction Patterns

Analyzing the interactions in scenarios of human-robot interaction like [Lüt+09], [Pel+09]
or [Beu+08] helped to identify several “recurring conversational patterns” [PW10] of ex-
changes between a human user and the dialog system and between the dialog system and
other components of the robot’s software that are found repeatedly in such scenarios. For
the PaMini dialog framework, these patterns were extracted and explicitly modelled to
allow reusing them in different new scenarios. This idea (and their name) were inspired in
part by the concept of design patterns in software-engineering, providing generic solutions
to typical problems of the field.

The interaction patterns model the interaction between the robot and the human in-
teraction partner as a set of states the dialog can assume and a set of valid transitions
between those states. These transitions can be activated either by input from the user or
by events concerning the execution of delegated tasks by different software components,
which is discussed in more detail in the next section. When a transition becomes active, it
can then in turn produce a dialog act of the robot as an output. Each pattern is modelled
as a state chart (see [Har87]), a generalization of a finite state machine that could be seen
as a transducer (consuming input from the user and the task events and producing robot
dialog acts as output) with added actions that are executed at each state.

Figure 2.4 shows two interaction patterns as an example. The first one, called Hu-
manSimpleActionRequest, allows a human interacting with the robot to ask it to perform
some kind of action. This request is defined as a dialog act (called H.request in the ex-
ample) by the human interaction partner, which starts the interaction with that specific
pattern. In the state called initiate in the first example, the dialog manager then gives
the task to another component that is responsible for actually making the robot perform
the action that was requested. Afterwards, the dialog just reacts to updates concerning
the execution of this task by giving feedback to the user in the form of several dialog acts
of the robot (e.g. R.acknowledge or R.apologize). The second example pattern, RobotSug-
gestion, is different only in so far as it is not started by a dialog act from the human, but
by some other controlling component on the robot wanting to make a suggestion and to

15

Figure 2.4.: Two interaction patterns: HumanSimpleActionRequest (which allows a hu-
man interaction partner to request an action from the robot) and RobotSug-
gestion (which allows the robot to suggest something that the human may
either accept or reject).

get feedback from the user about it.
As can be seen in the examples, the interaction patterns are specified at a very abstract

level. This is done intentionally, to make them reusable for a variety of different situations.
The person designing a specific dialog can take a subset of all the existing interaction
patterns and configure them for the real conversational situations in which they will be
used. This involves configuring conditions for the different dialog acts the human can
make, the surface form (i.e. the speech or gesture output) for the robot’s dialog acts and
specifications for the tasks being delegated to other components. As an example, the
dialog act H.request from the first example in figure 2.4 could be specified as some form
of the command “Robot, please follow me!” and the dialog act R.acknowledge could be
configured to make the robot say something like “OK, I am following you, now.”

It should also be noted that the dialog manager allows for a flexible way of combining
multiple active patterns. One pattern can be interrupted by another pattern, which gets
pushed on top of the first pattern in the manner of a stack. When the dialog receives
input, it first tries to match it against the top-most pattern of that stack. If that fails,
the other patterns in the stack will be tried afterwards. To stop this process of pattern
interleaving from getting out of control, the dialog manager contains a set of rules (that
can be adapted for individual situations) which restrict which patterns can be interrupted
and interleaved with other patterns. To provide an example, the interleaving rules could
allow a pattern for answering a simple question to be interleaved with one controlling a
long running task (like grasping an object in [Lüt+09]).

2.3.2. The Task State Protocol

To achieve the generalized delegation of tasks between different components forming parts
of the concept of interaction patterns described in the previous section, it was necessary

16

to define an abstract interface between components that is independent of the precise
nature of the task. To this end, PaMini communicates with other components using the
task state protocol, which is based on the XCF middleware framework [Wre+04].

This protocol defines several states a delegated task could assume, which can be seen in
figure 2.5. When the requesting component (often denoted the task submitter) submits a
task for execution, it first becomes initiated. The receiving component, also known as the
task handler, can then decide to accept or to reject the task. When accepted, the execution
of the task can be running for a while and may even produce intermediate results. The
submitter can try to update the specification of the task or to cancel its execution, but
the handler has the right to reject these requests. Finally, the task may be succesfully
completed or could also fail for some reason. Typically not all components make use of
all of these states, but in this generalized form a very diverse set of tasks can be covered.

(Lütkebohle et al. 2010) and a receptionist scenario where a
robot offers visitor guidance (Beuter et al. 2008). Given the
diversity of these scenarios, we argue that the resulting pat-
terns provide a good coverage of typical situations in human-
robot interaction.

In this paper, after recapitulating the main concepts of the
dialog manager introduced in (Peltason and Wrede 2010),
we report on novel results as to the question of whether
the interaction patterns constitute an understandable appli-
cation programming interface to the dialog manager. We
have conducted an experiment where programmers unfamil-
iar with the dialog manager were able to build a simple in-
teraction scenario consisting of begin and end of interaction
and at least one task involving interfacing to other compo-
nents within one hour. We consider it especially promising
that also programmers new to robotics were able to perform
tasks that required integration of dialog with the robot sys-
tem. This result suggests that the interaction patterns to-
gether with the task state protocol are appropriate concepts
to encapsulate the complexity both of dialog modeling and
component integration.

Figure 1: The Curious Robot and the Home-Tour scenario:
Two human-robot interaction scenarios that provided the ba-
sis for the identification of typical interaction patterns.

Utterance Interaction pattern
R: What is that? Correctable information request
H: This is a lemon. Correctable information request
R: A melon. OK. Correctable information request
H: No, I said ’lemon’! Correctable information request
R: A lemon. OK. Correctable information request
R: How should I grasp Simple information request

the lemon?
H: That way. Simple information request
R: Alright, with the . Simple information request

power grasp.
R: I am going to grasp it Self-initiated action
R: I start grasping now. Self-initiated action
H: What objects Human information request

do you know?
R: Lemon. Human information request
H: How do you grasp Human information request

the lemon?
R: With the power grasp. Human information request
R: OK, I finished grasping. Self-initiated action

Table 1: A typical interaction with the Curious Robot.

A dialog manager for human-robot interaction
In this section, we describe the main concepts of the dia-
log manager introduced in (Peltason and Wrede 2010) that
uses an abstract task protocol for interfacing with the do-
main level and provides a collection of generic interaction
patterns as building blocks for human-robot interaction.

The task state protocol
In distributed robotic systems, various components con-
tribute to the overall systems, for instance components for
dialog management including in- and output components as
well as components for perceptual analysis, motor control
and components generating nonverbal feedback. They need
to work together and coordinate.

To realize this, we use the concept of tasks that can be
performed by components. Tasks are described by an execu-
tion state and a task specification containing the information
required for execution. A protocol specifies task states rele-
vant for coordination and possible transitions between them
as shown in figure 2. Accordingly, the normal life-cycle of
a task is that it gets initiated, is running, may be canceled
or updated, may deliver intermediate results and finally is
completed. Alternatively, it may be rejected by the handling
component or execution may fail. Task updates, i.e. up-
dates of the task state and possibly the task specification,
cause event notifications which are delivered to the partici-
pating components supported by the middleware framework
XCF (Wrede et al. 2004), whereupon they take an appropri-
ate action such as creating dialog acts in case of the dialog
manager. The remainder of this section describes how inter-
action modeling benefits from this protocol.

cancel
requested

update
requested

runninginitiated

CANCELLED

DONE

failed

completedaccepted

result_available
rejected

cancel cancel_failed

update accept, reject

Figure 2: The task life-cycle.

Tight integration with action execution Having a robot
for instance performing a grasp action requested by the hu-
man requires communication involving the dialog system
and the arm control as shown in figure 3. As the dialog man-
ager receives the grasp command, it initiates a grasp task
which is accepted by the arm control. The dialog is notified
about the task state update and acknowledges task execution.
As the human commands canceling, the dialog sets the task
state cancel. The arm control fails to cancel the task and
sets the task state cancel failed which the dialog reacts on
by apologizing. Finally the task is completed, and the dialog
acknowledges successful task execution.

Generally, using this fine-grained protocol for component
integration enables the dialog system to provide feedback for
the user indicating the internal system state. On the other

Figure 2.5.: The task life-cycle [taken from PW10, figure 2].

The task request that the submitter submits is always composed of two different parts.
The first part describes the state of the task execution that was just described. This
part is always the same for all components and tasks. The second part contains the
actual description or specification of the task itself, which in most cases is very specific
to the individual components. This distinction is what enables the dialog (and other
components) to work with the tasks and react to changes in their state while being agnostic
of their specifics. When the submitter or the handler update the state or the specification
of a task, event notifications get sent to the respective counterpart, enabling them to react
to those changes.

The use of the task state protocol for the dialog manager is twofold. First it is used to
allow the patterns to delegate tasks to other components of the robotic system and to react
to state changes of these tasks in a uniform way. An example of that can be seen in the
first pattern from figure 2.4, where the different task states (failed, accepted etc.) are used
to define the progress through the different states of the interaction pattern. Secondly,
other components may also delegate tasks involving user interaction to the dialog system
and can also react, e.g. when the dialog rejects to fulfil their request.

17

2.3.3. Interaction Management in PaMini

The PaMini dialog framework contains some simple ways to control the opening and
closing of the interaction process. There is a policy that is used to decide if and when
the interaction should be opened and there are different actions that can be executed
from the states of an interaction pattern to reset or to close the interaction. One typical
configuration is to have the policy set to allow input for one specific interaction pattern
(e.g. one called HumanInteractionOpening) to open the interaction and to have a second
pattern (e.g. HumanInteractionClosing) that is used to close the interaction.

This is a far simpler model than e.g. the detailed management of interactions in the
models from section 2.2, but for most single-user interactions it fulfills its purpose well.

18

3. Scenario and Environment

This chapter tries to give a description of the technical and organizational environment
that shaped the development of this thesis. It takes a look at the robotic platform used,
a research project providing some thematic context and how they influenced the scope of
this work.

In the last section it will also introduce the scenario the system developed for this
thesis tries to realize. This scenario forms the guideline for turning the abstract ideas
about engagement in communication into a tangible system.

3.1. The Humanoid Robot Nao

One of the goals of this thesis was to implement the ideas presented here in a system
that is situated in the real world and can interact with humans in a natural way. Using
a robotic platform supports this goal by enabling direct interaction in the physical world
that can borrow much from already established models of interaction between humans.
By moving towards systems that look more and more human-like however, one also runs
the risk of raising the expectations towards the systems capabilities to unrealistic levels.
This also has to be kept in mind when building or choosing a system for human-robot
interaction.

The humanoid robot Nao (see e.g. [Ald10]), built by Aldebaran Robotics and shown in
figure 3.1, provides an interesting platform for research in this area. Its head is equipped
with four microphones usable for auditory perception tasks like speech recognition or
sound source localization, stereo speakers for producing speech and other sounds and a
visual system with two VGA cameras usable for detecting faces and other visual cues.
Nao has a fully articulated humanoid body with 25 degrees of freedom, but is only about
58 cm in height, a fact that has to be considered when designing scenarios relying on
face-to-face interaction between the robot and a human partner. Contained in the robot’s
head is an embedded computer with a 500 Mhz AMD Geode CPU and 256 MiB of RAM
running the Linux operation system. This allows for autonomous operation of the robot,
while the provided wireless and wired network connections also allow for embedding it in
a larger distributed system.

The provided software environment for programming the robot already comes with a
collection of features that enable fast prototyping of interactive scenarios, e.g. a func-
tional omni-directional walking algorithm, a module for performing text-to-speech tasks

19

Figure 3.1.: The robot Nao from Aldebaran Robotics.

and simple face detection capabilities. The robot’s exterior design tries to strike a bal-
ance between being human-like enough for interaction purposes but still being clearly
recognized as a machine. Nao has also been chosen as the final target platform for the
HUMAVIPS project, described in the next section, which confirmed the choice for realizing
this thesis using the same robot.

3.2. The HUMAVIPS Project

HUMAVIPS (short for Humanoids with Auditory and Visual Abilities in Populated Spaces)
is a project in the European Union’s seventh framework programme that aims to provide
humanoid robots with the neccesary skills to interact successfully within groups of peo-
ple. The robot should be able to navigate such an environment, to recognize and identify
persons and to communicate with them in a natural way (see [HUM09]). This thesis was
written in the larger context of research done for this project.

Reaching this goal involves research into perceptual mechanism, e.g. fusing auditory
and visual data to generate hypotheses about the environment, but also into how these
sensory abilities could be used to enhance the behavior the robot shows when engaging
people in a dialog. Interactions in the scenario envisioned by the project also neccesarily
involve multiple persons, which leads to research into better multi-party dialog abilities.

The work done for this thesis tries to enhance the dialog system, allowing it to interact
with groups of people, making it easier to integrate perceptual cues and to experiment
with their significance for the dialog.

20

3.3. A Scenario for Multi-Party Interactions

The scenario that was realized had to include some specific types of interactions to make
it interesting for studying the realization of engagement rules in a multi-party setting. As
a basic requirement, it has to include interactions that typically involve multiple persons.
It should also present the possibility to showcase the dynamic management of multiple
separate, but possibly overlapping interactions and should allow people to join or leave
an interaction at various points in time.

To demonstrate as much of this as possible, a simple scenario was chosen, consisting
mainly of the social interaction of having the robot introduce multiple persons to each
other. The robot asks individual people for their name and actively tries to draw silent
bystanders into the interaction. If it succeeds in this, it first tries to find out if the partic-
ipants already know each other. If this is not the case, it proceeds by introducing them.
To add the challenge of overlapping interactions, interrupting an ongoing conversation by
asking if the robot has already seen a specific person today is also possible. See figure 3.2
for an example interaction in this scenario.

Figure 3.2.: Two persons interaction with Nao in the introduction scenario.

In all of these situations, the robot is seated on top of a table, enabling it to engage in
face-to-face interactions with human users regardless of its own height (see section 3.1).
On the other hand this restricts the robot’s movement, stripping the interactions of the
possibilities moving around in the room would offer. For the extent of this thesis this
limitation is deliberate, as it also simplifies the sensoric processing, but extending it to
scenarios with a truly mobile robot is definitely planned for the future.

Besides the standard interaction patterns, e.g. for posing or answering questions, this

21

requires the dialog system to have the ability to detect and discern multiple people and to
reason about their actions and intentions in so far as they are relevant to their engagement
in the dialog. It also requires the explicit management of multiple interactions, each with
their own state and different engaged users.

3.3.1. An Example Dialog

Table 3.1 shows the basic flow of events in an example dialog that follows the scenario
described above. It shows at least two separate interactions with different participants.
One of them happens when the robot Nao tries to introduce two human interaction part-
ners, P1 and P2. The other interaction is between the robot and P3, a third user that just
walks by and engages the robot in a side interaction by asking it a question. Asking the
second user to join the first interaction could also be considered a separate interaction.
But after he decides to join in, he becomes part of the longer-running original interaction.

The diagrams in the last column of the table are inspired by the notation from [BH09a].
They show the current state of the interactions between the users and the dialog system at
that point in time. The circle symbol represents the system itself, the dark square
an active interaction and the lighter square an interaction that is currently suspended.
The numbers represent the individual users.

Looking at the individual steps of the interaction, one can identify several actions that
show the general direction for the intended engagement strategy. In step 1 and 4, the
human users show the intention to interact with the robot. In this example, the robot
only takes the second case as an opportunity to actively engage the second user. The
dialog also includes examples of direct verbal cues for engagement or disengagement,
e.g. the greeting in step 2 or the words of parting in step 16. Step 5 is an example of
suspending one interaction to open a side-interaction with P2, who will later (in step 7
or 8) join the now reactivated first interaction. Suspending an interaction and opening
a new one happens again in step 12, but this time the robot does not politely excuse to
the users engaged in the first interaction, because the question of P3 has to be answered
quickly. Disengaging can also happen implicitly by just leaving, as is shown in step 15.

22

Actions Dialog state
1. P1 enters, positions himself in front of Nao and looks at it. 1

2. P1: Hello, I’m Sebastian. 1

3. Nao: Hello Sebastian, I’m Nao. Nice to meet you! 1

4. P2 enters the room, looks at Nao.
1

2

5. Nao (to P1): Excuse me for a second!
1

2

6. Nao (to P2): Hello! I’m currently talking to Sebastian, do you
know each other?

1

2

7. P2: No, I don’t know him, yet.
1

2

8. Nao: Then let’s introduce you two, what is your name?
1

2

9. P2: I’m Johannes.
1

2

10. Nao: Johannes, this is Sebastian. Sebastian, this is Johannes!
1

2

11. P3 enters, goes straight to Nao, asks:
1

2

3

12. P3: Did you see Julia today?
1

2

3

13. Nao (to P3): No, I did not see her today.
1

2

3

14. P3: Ok, thanks, I’ll have to look for her myself.
1

2

3

15. P3 leaves.
1

2

3

16. P1: We’ll have to leave now. We have a meeting in 5 minutes!
1

2

17. Nao: Bye, Sebastian! Bye, Johannes!

Table 3.1.: Example dialog.

23

4. The Engagement Subsystem

The scenario described in the previous chapter was realized by extending the dialog system
described in section 2.3 with a subsystem implementing a model of engagement. This
model roughly follows the ideas from Bohus and Horvitz [BH09a], adapting them to fit
the needs and the environment presented earlier.

This chapter first describes the architecture of the newly developed parts of the sys-
tem, how they work together to track the user’s engagement state and actions, to make
engagement decisions and how those decisions are finally rendered into actual behavior.
In the process it also describes the interfaces that allow the system to be extended, e.g.
to incorporate sensory information or to change the realized behavior. Following this is a
description of how this system was used to realize the desired example scenario.

4.1. Interaction Management

In the existing dialog system, all dialog state was kept inside the same interaction context.
The interaction could be opened by specific actions taken by the user and could be closed
or reset (see section 2.3.3 for a closer look at this), but this mechanism is not really flexible
enough, especially if dynamic multi-party interactions are the goal. I extended this using
the concept of an explicit unit of problem-solving or working together (see section 2.2.2
for the motivation for this approach), called an interaction.

Such a notion of an interaction helps partition the continuous and possibly indefinite
space of encounters between a situated robotic system and its users into manageable units.
Perhaps most importantly, several interactions can be layered to distinguish between
multiple overlapping interactive tasks. While the robot can only actively participate in
one interaction at a time, several others can be kept track of in a suspended state and
may later become active again. The interactions can be opened or closed and opening a
new interaction might suspend another one currently being active. Users can be engaged
in or disengaged from specific interactions. Going back to the concept of the interaction
patterns (described in section 2.3.1), an interaction also provides a context for patterns
to be grouped together and executed separately from patterns in other interactions.

Technically, the interactions are integrated into the dialog system as a stack, the top-
most interaction on the stack representing the currently active one and all interactions
below it being suspended. Figure 4.1 shows an example snapshot of the current dialog
state. It shows an active interaction and a suspended one below it. The active interaction

25

Figure 4.1.: The dialog state showing active & suspended interactions, engaged & not-
engaged users and interaction patterns inside the interactions.

has two engaged users, the suspended interaction only one. There is also one user who is
not engaged in any of the open interactions. Each interaction also contains its own set of
active interaction patterns waiting for further input.

4.2. Engagement Decisions

The engagement subsystem comes into play in two different basic situations. The first
happens when the dialog system receives input from a human user. Such an input could
come from a speech recognizer, but input sources for other modalities are also possible, e.g.
for reacting to gestures or other forms of recognized actions. In this case, the engagement
system acts as a filter for the input, determining what should be done in reaction to
the input and the current engagement or general dialog state. Actions taken in response
can include opening or closing interactions, engaging users in specific interactions (or
disengaging them) and processing the user’s input using the interaction patterns associated
with an interaction.

For the second case, the system regularly checks the current engagement and dialog
state even when no input is received from the users. This is done to enable the system

26

to also actively make engagement decisions (e.g. trying to engage a user in a specific
situation) by itself, allowing the system to take the initiative in an interaction. It also
allows it to react quickly to other changes in the engagement situation that might not be
seen as an explicit action by the user that could be represented as an input. The actions
the system can take in these situations include basically all those that can also be done
in response to user input, apart from processing an input.

Since the exact rules for these decisions are often quite specific to an interactive scenario,
the policy deciding what has to be done in which situation is not fixed in the dialog
system itself but can be extended or replaced easily. Later sections of this chapter include
a concrete example for the rules used in such a policy. To provide the basis for making
these decisions, the system includes mechanisms for deciding which engagement action
is represented by an input from the user and for determining if a user currently has the
intention to interact with the system.

Figure 4.2.: An architectural overview of the engagement subsystem.

Figure 4.2 shows an architectural overview over the classes and interfaces used in the
relevant parts of the dialog system. The EngagementManager provides the central hub
for everything happening in the engagement subsystem. It receives all the input di-
rected at the dialog system through its various processInput methods and also contains
a separate thread performing the regular checks described above through the use of the
engagementStep method. In both cases, it first collects all the necessary information

27

(for example from the information providers described in the following section) and then
delegates the decision to the EngagementControlPolicy, described in section 4.2.2. This
policy returns a “plan” of actions the system should take, which are then applied by the
manager. Tasks like the processing of input or the opening and closing of interactions
are in turn delegated to the DiscourseOperator, which manages the stack of interactions
described in the previous section. Each of those interactions is represented by an instance
of the class Interaction.

4.2.1. Engagement State, Actions and Intentions

It is clear that any dialog system intended for verbal interaction needs a working system
for receiving speech recognition input, but a system intended to react to subtle changes in
the engagement behavior of its users has more requirements on its sensory components.
Such a system needs to know which interaction partners are present (and possibly where
they are in relative to the robot and each other), it needs to know the significance of
their actions regarding the engagement process and it needs to recognize if they want to
interact with the system (and when they want to stop interacting with it). The real world
(or rather the robot’s perception of it) gives us many clues for this, from the user’s focus
of attention to gestures that could be recognized or information that can be gathered from
the user’s position and movement relative to the robot. This section presents an approach
trying to systematically integrate information about cues and hints like this into the dialog
management.

The engagement subsystem includes a generic interface for integrating hypotheses about
the known users, called the UserManager in figure 4.2. This helps by providing a list of
known users and assigning them a distinct identifier to distinguish them from each other,
but it could later be extended to keep track of more information about the individual
users. Implementation of this interface will mostly integrate information from different
sources to form person hypotheses that are stable in time and overcome the drawbacks of
individual sensor modalities.

The engagement state of a user and the engagement actions a user may take are mod-
elled using the enum classes EngagementState and EngagementAction, respectively. The
engagement state (which is managed separately for each interaction) can only be engaged
or not-engaged and the engagement actions are chosen from the set of engage, disengage,
maintain and no-action. Since the guesses for the user’s engagement intention can have
the same values as the engagement state, the same enum type is used in this case. All of
these types and their values correspond closely to the variables ES, EA and EI as they
are used by Bohus and Horvitz (described in more detail in section 2.2.2).

When receiving an input from a human user, the system will try to determine which
action (if any) in regard to the engagement state this was meant to represent. To do
this, the EngagementManager includes two different sets of CueProviders (see figure 4.2),

28

one for determining if the input received was a cue for taking an engage action and
one for detecting cues for disengagement. These information providers are an interface for
plugging in different mechanisms for detecting engagement cues. As a first step, the system
determines the current engagement state of the user from which the input originated, i.e.
by checking if they are engaged in an existing interaction. Depending on this state, the
system then checks either the engagement cue providers or the providers responsible for
disengagement cues to determine their confidence that this input was meant as such a
cue. This value is in turn used for calculating confidence values for the different types of
engagement actions. Examples of these cue providers could include keyword spotters or
other kinds of providers that look at the content of speech input and providers that relate
actions such as waving or nodding the head to their meanings in a dialog.

Another important information for the engagement decision process is the intention that
a user has to engage. As was already discussed in section 2.2.2, this variable determines
users that might want to interact with the system without necessarily having taken any
explicit action in that regard, yet. It could e.g. be used to detect users that would probably
respond positively, should the system try to engage them. To gather information about
this, the EngagementManager includes a set of IntentionProviders, an interface meant to
facilitate incorporating different sources of information about the user’s intention. These
providers also return a confidence value for a specific user. These values are then used in
combination to determine the general confidence that a user might have the intention to
interact with the system. Many examples of providers in this category will be based on
some measure of attention the user directs to the system, e.g. by trying to determine if
and for how long the robot has been the user’s visual focus of attention.

In the case of both the cue providers and the intention providers we have a set of
multiple providers, each returning a confidence value in the range of [0, 1]. These values
are combined into general confidences for the different possible values of their respective
variables (the engagement action and engagement intention described above) in the same
way. First the values of all the different providers of the same category are summed
according to the formula:

N∑
i=1

wipi(x)

In this formula N is the number of providers, wi is a weight assigned to the i-th provider
when registering it and pi(x) denotes the value the i-th provider returned for the input or
the user x. In the case of the cue providers, this value is then used as the confidence for
the input being an engage or disengage action, in the case of the intention provider it is
used as the confidence that the intention should have the value engaged. The respective
other values, for which no provider is used (no-action or maintain for the actions and
not-engaged for the intention) are initialized to a fixed threshold value. Finally, only the
value with the highest confidence is then passed on to the next step in the process, the

29

engagement control policy described in the next section.

4.2.2. The Engagement Control Policy

As has already been mentioned, the engagement control policy (a class implementing the
EngagementControlPolicy interface shown in figure 4.2) is involved in determining the
system’s course of actions in two different situations. When an input is received and the
steps described in the previous section have been carried out, the EngagementManager
asks the current engagement control policy for actions that should be performed by the
dialog system. To make this decision, the policy gets access to the input itself, the state
of the current interaction (including information on which interaction pattern this input
would match), to the engagement action this input represents and the user’s current
engagement intention (the latter two estimated by the process described before). It can
then use as much of the information as it requires to assemble a list of actions that will
form the system’s reaction to the input.

The engagement manager will also perform a special engagement step at regular inter-
vals. In this step, it will first determine the intention of all known users in the same way
it determines the intention of the single user that produced an input. It will then collect
the current state of all active and suspended interactions, including the engaged users
and the interaction patterns currently being active in each interaction. Both of these sets
of information are then passed on to the engagement control policy to determine if the
system should take any actions by itself in this situation. A typical way to implement the
decision making process in both cases will consist of checking a set of basic if-then rules
handcrafted for special situations, e.g. of the form “IF [some conditions on the current
state and/or the input are met] THEN [return these actions]”. More complex variations
are of course also possible, e.g. it would be interesting to try to build a policy that performs
according to patterns learned from interactions, either between human users or users and
the system.

Since the engagement control policy defines actions to be taken in specific interactional
situations, it has to be tailored to some degree to the scenario of interactions that should
be realized. To enable this, the realization of the policy can be changed in the engagement
manager, even at the runtime of the system, if that is desired in a particular situation
or scenario. It is also possible to create a policy implementing some general situations
and extending that at a later point to provide support for more specific situations. The
engagement subsystem currently contains a very basic default policy that is designed to
mimick the behavior of the dialog system without any active engagement components.

The actions returned by the engagement control policy in both of the general use cases
described above are objects implementing the interface SystemEngagementAction. The
policy will always return a list of these action objects, which will be executed or applied
by the engagement manager in the list’s order. When one action is applied, it receives the

30

previous action’s result and the DiscourseOperator allowing it to manipulate the current
interactions or to process inputs. It then has to perform the action it was designed
to do and return a character string as a result. This result is meant as a light-weight
way to pass results from one action to the next, but is also used by the engagement
manager to determine if the application of an action has succeeded or not. When an
action returns a result indicating failure, the engagement manager will stop executing the
rest of the list of returned actions. The engagement subsystem comes with a set of default
system engagement actions for opening interactions, engaging or disengaging users in
interactions, for processing user inputs and for carrying out abstract “engagement tasks”,
which are described in the next section. A specific policy can also return specialized
actions characteristic for tasks only relevant in that scenario.

This use of the policy can be compared to the way the engagment control policy de-
termines the system engagement action SEA in Bohus and Horvitz [BH09a], although
they define this action at a much higher level of abstraction and only later determine the
particular actions meant to realize this decision.

4.2.3. Engagement Tasks

As part of the actions described in the previous section, the engagement control policy can
return units of action called engagement tasks. These tasks are specified at a very abstract
level and contain only a name denoting the action to be done (e.g. “EngageUser”) and a list
of users affected by this action. They are submitted using the task state protocol described
in section 2.3.2 and can be handled by any component that is configured to accept tasks
of this type. That component could be an interaction pattern configured to be triggered
by a specific engagement task, but it could also be a component completely separate from
the dialog system. A result of carrying out the action (or simply an indication of success
or failure) will be returned to the system engagement action through an updated version
of the task specification, regardless of the details of action execution. The specification
and the current state of such an engagement task can be observed by other components
apart from the submitting system engagement action and the component handling the
task, a fact that could be used to realize more subtle and not completely goal-directed
engagement behaviors, e.g. by controlling the eye gaze behavior of the robot.

This process makes it possible to isolate the plans of action generated by the engagement
control policy a bit more from the details of the actual behavior used to carry them out,
bringing back some of the abstraction and separation of concerns provided by the distinc-
tion between the system engagement action SEA and the system engagement behaviors
SEB as they were proposed by Bohus and Horvitz.

31

4.2.4. The Engagment Process in Action

This sections shows an example of the whole engagement process being applied in a
specific situation. Figure 4.3 shows the basic sequence of actions starting with an input
that was received from a human interaction partner. In the first steps, the engagement
manager asks the discourse operator for the current interaction and the pattern that
would be matched by this input, if it was to be processed. Afterwards, the values for the
engagement action and the engagement intention are calculated by asking all the registered
cue and intention providers, as was described previously. This collected information is then
passed on to the engagement control policy which returns a list of actions to apply. The
engagement manager then iterates over all the returned actions, checking the return value
in each case to see if it should continue with the next action.

Figure 4.3.: An example of the engagement process in action.

4.3. Scenario Configuration

The following sections describe what was technically done to realize the scenario described
in section 3.3. This scenario and its realization is deliberately kept simple and doesn’t
make use of all the features discussed up until now, but it serves as a good basic proof
of concept that shows that interesting forms of interaction can be modelled with the
approach taken here.

The next section introduces some of the components that were created to provide a

32

bridge between the dialog system and the robotic control software of the Nao platform
(see section 3.1). The sections after that talks about the specific interaction patterns that
were used in this scenario, the rules crafted to model the engagement control policy and
what kind of information about the users was used in realizing the desired interactions.

4.3.1. Connecting Nao and PaMini

To connect the PaMini system for dialog management (see section 2.3) with the robotic
platform provided by Nao, some additional software had to be developed. Figure 4.4
shows a schematic overview of the different components and the communication paths
between them. The left side of the figure contains modules running on the robot and
the right side shows all components running on a connected computer. This division was
deemed necessary, because of the limited computing power and other constraints of the
embedded computer system inside the robot.

Esmeralda

PaMini

SpeechMatcher

SplocES

Active
Memory

AudioSender Spread

Simulation and Control
GUI

ALTextToSpeech

AudioReceiver

NaoSpeech

Engagement
Subsystem

Figure 4.4.: Components of the scenario architecture. Green boxes designate the compo-
nents developed for this thesis.

Perhaps the most important connecting piece of software has been the audio transport
from the robot to other computers over a local area network. This was implemented as
a module running on Nao’s embedded computer (labeled AudioSender in the figure) that
accessed the audio stream from all four microphones in the robot’s head and directly

33

sent this stream unprocessed over the network to all components interested in receiving
it. The efficient distribution over the network was realized on top of the Spread toolkit
[Spr09] that provides methods for reliable distribution of data using group communication
semantics. On the receiving side this audio-stream was split up (by the module named
AudioReceiver) again into individual channels, the signal from the front microphone being
fed into the speech recognizer Esmaralda (see [Fin99]) and the left and right microphone
signals being directed at the audio source localization component described in section
4.3.5.

Speech production was realized using the on-board speech synthesis engine provided as
part of Nao’s software platform. To connect this to the dialog system, an adapter was
developed (labeled NaoSpeech in figure 4.4) that allowed this module to be accessed over
the XCF middleware-framework (see e.g. [Wre+04]). Since this interface closely followed
the speech synthesis solutions that had been previously used, almost no changes on the
side of the dialog system were necessary. The inputs and most other sensory information
(including the information about the currently known users) reaches the dialog through
the ActiveMemory system, which also a part of XCF.

A component that has also been developed, but has not yet been used in the system,
allows the dialog system to access Nao’s internal systems using the task state protocol.
This could for instance be used to allow the dialog system to get information about the
current state of the robot (e.g. to allow it to answer queries about this state) and in a
later version maybe also as a base for controlling the robot’s movements.

4.3.2. Speech Input Grammar

The speech recognizer Esmeralda was configured with a constrained grammar specific to
the utterances expected in the introduction scenario. This includes among others typical
greetings (e.g. “Hello, Nao!”), people introducing themselves (e.g. “I am Sebastian.”),
people answering questions about their relation to others (e.g. “Yes, i know her!”) and
people wanting to leave the interaction (e.g. by saying “Good bye!”). The appendix A
includes a complete description of the grammar that was used.

Apart from improving the quality of the results of the speech recognizer (because it has
to choose among fewer alternatives), structuring the utterances into this grammar also
allows the dialog system to leverage the parsing work the speech recognizer has already
done. One example of this is the fact that the non-terminal symbols for the different
categories of utterances described above can be used in the descriptions of the different
human dialog acts used by the interaction patterns.

4.3.3. Interaction Patterns

A collection of interaction patterns (see section 2.3.1) is used to specify the possible
interactions between the human users and the robot in different situations. This section

34

provides the details of which patterns are used in which situations and how they are
configured to be triggered by the right inputs or engagement actions and to produce the
right dialog acts by the robot.

For opening the interaction, a pattern of the type HumanInteractionOpening is used. It
is configured to allow a human interaction partner to greet the robot by saying a sentence
of the greeting-category defined in the previous section, to which the robot will reply
with an appropriate answer (e.g. “Hi, nice to meet you!”). It is important to note that
the actual opening of an interaction is not controlled by the application of this pattern.
Instead, this is specified through the engagement rules defined by the policy described in
the following section.

To enable the robot to ask the user for his or her name, a pattern of the type RobotSim-
pleInformationRequest is used. This pattern is configured to first ask for the user’s name,
wait for a reply specified by the grammatical category for introductions and acknowledge
the name that was learned. As is the case for all dialog task patterns (i.e. those whose
name starts with Robot. . .) it is not triggered by input received from the user, but instead
by a task submitted to the dialog system. In this case, the specific task is an engagement
task (with the task name “UserNameQuery”) produced by the engagement rules, but it
could as well also be triggered by a completely separate component only concerned with
learning the user’s names. The pattern will store the name learned in an updated version
of the original task specification.

The scenario configuration also contains a pattern that is used when the robot is actively
trying to engage a second user in an interaction. This pattern is also of the RobotInforma-
tionRequest type and is triggered by an engagement task with a name of “EngageUser”.
In which exact situations this task is generated is also described in the next section. The
pattern will first ask the second user if he or she already knows the first user. The answer
given by the user will again be stored in the updated task specification so the result can
be used by the engagement action that initially triggered this pattern.

When the robot detects that it knows the names of at least two users, it needs to
introduce them to each other. This is done by a pattern of the RobotNotification type,
which simply makes the robot produce a dialog act introducing the users (i.e. by saying
“Johannes, this is Sebastian. Sebastian, this is Johannes!”). This is again triggered by
the engagement rules through an engagement task, this time with the name “Introduce”,
but the comment about a separate name learning component also applies here.

Asking the robot if it has already seen a specific user is possible through a pattern of the
type HumanInformationRequest. This pattern is configured to be triggered by a human
user asking if the robot has seen a user today to which the robot will give an appropriate
answer (e.g. “No, i have not seen Julia today.”). The information used to decide about
the robot’s answer is at the moment just the history of user names that have already been
learned, but this could be expanded in the future to a more detailed temporal history of
past encounters.

35

Finally, it is also possible to detach oneself from the interaction. If a user wants to leave
and says e.g. “Good bye!”, this will trigger a pattern of the type HumanInteractionClosing
that will make the robot reply by also saying good bye. In turn, this will also close the
interaction.

4.3.4. Scenario-Specific Engagement Control Policy

The engagement control policy for the introduction scenario is implemented using a set of
seven different rules. Four of these rules (labeled A1 through A4) deal with the processing
of input received from users and three (labeled B1 to B3) are used in situations without
any explicit input. This section contains a detailed description of these rules and the
effects they are meant to achieve.

Rules for Input Processing

A1 The first rule allows any user to engage the system when there are currently no
active interactions. For this the system simply checks if the user input was classified
as an engage action and that no current interaction exists. If this condition is met,
the policy will return a list of two system engagement actions, the first of which will
open a new interaction with the user who produced the input and the second action
will simply process this input.

A2 To allow anyone to disengage from the current interaction, there is a rule that
tests if the input received represents a disengage action and that the user is indeed
engaged in the current interaction. If both of that is the case, it returns a list of two
engagement actions. One of them will disengage the user from the interaction and
the other one will also process his or her input, since it could still match a pattern
and produce a response by the robt (as is the case for the pattern used for saying
“Good bye”).

A3 The third rule for input processing is responsible simply for processing inputs of
already engaged users. To achieve this, it makes sure that the input represents a
maintain action (i.e. not a disengage action) and that the user is currently engaged
in the interaction. In that case the policy will just return the one action necessary
for processing the input.

A4 The last rule is used to allow anyone to open a new interaction under special cir-
cumstances, which is necessary to allow the interruptions described in section 3.3.
To realize this, the policy checks if the input was really meant as an engage action
and if it would match an interaction pattern being part of a special set of priority
patterns that can be specified when the policy is created. If this situation, the policy
will again return the actions necessary for opening a new interaction with the user

36

and processing the input. In the introduction scenario, only the pattern that allows
the user to asks the robot if it has already seen a specific user is classified as being
such a priority pattern.

Rules for Situations Without Input

B1 The first rule in this category is used to actively try to engage another user in an
already ongoing interaction. To achieve this, a combination of different conditions
has to be met. First of all, this rule only becomes active if there is already an open
interaction and there are some known users. It then checks if any of these users is
currently not engaged in the interaction, but has the intention to engage the system.
If it finds such a user, the policy returns a list of actions meant to engage him or
her. The first action will open a new, parallel interaction with that user (thereby
suspending the currently active one for a while). The second action will submit the
“EngageUser” engagement task, which triggers the respective pattern described in
one the previous sections. If this tasks returns a result indicating success, the third
action will close the extra interaction and engage the user in the first interaction.
As was already mentioned, the second action could also trigger some other process
meant to engage the user. That this is accomplished by an interaction pattern
configured for this is only one possibility.

B2 The next rule is used to find out the name of a user. The policy contains a collection
of known users names. This rule goes through all engaged users looking for one whose
name is not known. If it finds such a user, it returns a list of two actions. The first
will submit an engagement task named “UserNameQuery” and wait for its result. If
this succeeds, the second action will use the result from the previous action and store
it as the user’s name. This last action is the first instance of a system engagement
action that is specific to this scenario and not part of the engagement subsystem’s
standard set of actions.

B3 The last rule of this type is used to have the robot introduce two users as soon as it
knows both of their names. The rule first looks for an open interaction with at least
two participants and then checks if it already knows the names of those participants.
If that is the case and they haven’t already been introduced, the policy returns a
list of two actions. The first action submits an engagement task named “Introduce”
(that is in this case again handled by an interaction pattern configured for it) and
the second action marks both participants as having been introduced so this rule
will not trigger again and again for the same two users. This action updating the
introduction state is the second system engagement action developed specifically for
this scenario.

37

4.3.5. Interfaces with the Real World

This section describes the actual interfaces that were used in connecting the dialog system
to the outside world. This includes getting hypotheses about the known persons and about
their actions and intentions. As a basic proof-of-concept scenario, not much effort has been
invested in developing or finding accurate mechanism or algorithms for providing sensoric
input. This only serves to show that even with this limited data, interesting interactions
can be realized and provides a basis for future work more focused on the robot’s perception.

Person Hypotheses

The implementation of the UserManager interface that is used in this scenario gathers all
information about the known users from an external component via the ActiveMemory
system provided by XCF [Wre+04]. This external component could of course base these
hypotheses on actual sensoric data, but for now this process is only simulated, since
this sensoric procession has not been the central focus of this thesis. Figure 4.5 shows
a screenshot of the graphical user interface of the simulation component, allowing an
experimenter to directly manipulate the information about which users are known to the
dialog system and about their state. The blue circle in the screenshot is a representation
of the robot Nao and the red and green circles are hypotheses about known persons in
different states.

Figure 4.5.: The graphical simulation user interface.

Using Speech Input as Direct Cues

For gathering cues about engagement and disengagement actions by the users, three sim-
ple information providers based on the recognized speech that was received are used in

38

this scenario. The first two simply scan the received input for specific keywords (e.g.
“hello” or “bye”) and take any input matching those keywords to be an explicit cue for
engagement or disengagement. They are thus examples of a simple keyword-spotting pro-
cedure. The third provider, used only for engagement cues, is based on the interaction
pattern configuration and the same list of priority patterns also used in realizing one rule
in the engagement control policy. If an input matches a pattern from this list, that input
is also believed to be an explicit cue for engagement.

A special problem arises from the fact that some decisions of the engagement process are
based on the information which user generated a particular input. The speech recognition
system itself does not provide any information in regard to speaker identification and
while it could certainly be modified and trained to detect differences in the voices of
each speaker, this is beyond the scope of this thesis. To still be able to match the input
to the person hypotheses, a system was developed based on the existing sound source
localization component named SplocES that has already been used in previous human
robot interaction setups (see e.g. [Lan+03]).

SplocES:
(angles)

Esmeralda:
(speech)

time:

Step1Step1

Step2Step2

Figure 4.6.: Matching speech recognition results to individual speakers.

This component provides the directions of sound sources every time it detects sounds
in speech-like frequency ranges in the input signal. Figure 4.6 shows an illustration of
the current approach of mapping these detections to the speech recognition results. As
an initial step to facilitate this matching, the individual detected angles are combined
into “windows” of speech coming from roughly the same direction at points in time not
too far apart. The first real matching step then involves finding the window that has the
greatest overlap in time with the timespan of a speech recognition result. The second
step of matching then takes a mean angle of this window and tries to find the person

39

hypothesis being closest to this direction. The results of this initial approach are still of
a mixed quality and there needs to be more work done to accurately match each received
input to the right person.

Detecting Engagement Intentions

In the current version of the scenario, the engagement intentions are completely simulated
using the user interface described previously. They are set by the experimenter in that
interface and transmitted to the dialog system through the memory based user manager,
which also serves as an intention provider. The screenshot in figure 4.5 shows the person
hypotheses colorized by the value of their engagement intention.

One idea for building a real measure of the engagement intention would be using a face
detector (e.g. the one also described in [Lan+03] or a similar approach) that provides
information about the angle of the detected face in relation to the robot. This could be
used to measure when and for how long the user directly looked in the direction of the
robot, i.e. how long the robot has been the user’s visual focus of attention. This measure
could then be interpreted as an indication of the user’s engagement intention, potentially
in combination with other measurements.

40

4.4. Analyzing Interactions

This chapter describes in some detail a test run of the developed system in the scenario
described in general in chapter 3 and in its technical details in the previous sections of
this chapter. This was done to collect information on the operation of the system in
interaction and to identify and analyze areas that performed well and those that still need
optimization.

4.4.1. Data Collection

Most of what is shown in the following sections is based on logfiles produced during
the system’s normal operation. The information that is recorded includes the results of
the speech recognizer, the results of matching this input to the known users, changes
in the state of the dialog (including the open interactions and their engaged users and
active patterns) and the state of the currently known users (including their engagement
intention). The engagement control policy also recorded which of its rules triggered at
which point in the interaction.

The interation log as it is shown here is a condensed version and shows only the major
events relevant to the interaction. When a rule is triggered inside the engagement control
policy, only the short designation given in section 4.3.4 is listed. The details of the
triggered rule can be found in that section. The times shown for the individual events
are in the form minutes:seconds,milliseconds. The appendix B contains an unabridged
version of the recorded events.

The current state of the dialog and the known users uses the same type of small diagram
described in section 3.3 and is only repeated at those points in time where this state has
changed.

Simulated Interaction

This test run was done in a completely simulated environment, i.e. no real speech recogni-
tion or other sensoric processes were used. Instead, the speech input was provided trough
the simulation environment described in section 4.3.5, which also “matched” the input
perfectly to the users designated by the experimenter. This was done to verify the basic
operation of the whole system and also to have a baseline to compare the results achieved
in more complex situations to.

Time Action State

4:13,412 Speech input received: ’hello nao’ 1

4:13,521 Rule A1 triggered by speech input ’hello nao’. 1

4:14,126 Speech output: ’Hi, nice to meet you!’

41

Time Action State

.

4:14,970 Rule B2 triggered.

4:15,774
Speech output: ’It seems like i do not know your
name. Who are you?’

4:30,001 Speech input received: ’i am david’

4:30,032 Rule A3 triggered by speech input ’i am david’.

4:30,525
Speech output: ’OK, David, i’ll try to remember
your name.’

.

4:51,564
The dialog currently knows about 2 users. (User 0
has intention=1.0, User 1 has intention=1.0)

1

2

4:52,113 Rule B1 triggered.
1

2

4:53,292
Speech output: ’Hello, do you already know each
other?’

5:13,880 Speech input received: ’no we do not’

5:13,887 Rule A3 triggered by speech input ’no we do not’.
1

2

.

5:14,025 Rule B2 triggered.

5:15,342
Speech output: ’It seems like i do not know your
name. Who are you?’

5:35,930 Speech input received: ’my name is sebastian’

5:35,938
Rule A3 triggered by speech input ’my name is se-
bastian’.

5:36,468
Speech output: ’OK, Sebastian, i’ll try to remember
your name.’

5:37,002 Rule B3 triggered.

5:37,974
Speech output: ’Then lets introduce you two. David
this is Sebastian, Sebastian this is David.’

.

Table 4.1.: Abridged interaction test run.

42

Recording Real Interactions

While recording interactions with real speech input and more complex sensoric processing
was originally planned, problems with the speech matching system described in section
4.3.5 and other constraints have prevented their inclusion in this thesis. Since these
sensoric processes weren’t part of the core focus of this thesis, optimizing them has been
postponed until after the completion of this thesis. Nevertheless, using this system in
more and more real interactional situations is still the goal for the future, since only real
interactions can provide a benchmark for how well this approach models the details of
engagement in multi-party interactions.

4.4.2. Results

The interaction in the simulated example shows that the core of the engagement subsystem
works as expected and that no serious problems seem to hinder the fundamental way the
engagement control policy interacts with the rest of the dialog system to achieve the
management of the engagement state. Comparing this to the example dialog that was
defined as a goal in section 3.3, we can see that the achieved dialog and the changes in
the engagement state of the participants differ only slightly from the initial concept. The
shift of initiative when the user is telling the robot his or her name stems from the fact
that the opening of the interaction and the question for the name where split up to be
modeled using two different interaction patterns. While this is more of a technical reason,
it also serves as a nice example that giving the robot the initiative in some situations can
lead to very natural dialogs.

43

5. Conclusion and Outlook

The work done for this thesis provides a promising approach for modeling multi-party
interactions and integrating different sources of information about engagement cues and
signals. While benchmarks in more realistic settings are still needed, the general archi-
tecture can be used and extended to model a variety of multi-party interactions. This
chapter takes a critical look at what was achieved and what could be done in the future
to enhance or expand the work done for this thesis.

One direction that could provide further insights into how a robot should behave when
interacting with a group of people is having the robot move around in this group while
trying to achieve its goals of interaction. This will provide new questions, e.g. how a robot
should position itself when trying to address different parts of a group and how to select the
correct interaction partner from a group in different situations. While the scenario used
for this thesis did not including a moving robot (see section 3.3 for a discussion of this), no
general assumptions in the modeling decisions made should preclude this approach from
being extended in that direction. The integration of systems dedicated to generating
hypotheses about interaction partners for a mobile robot (e.g. similar approaches to the
work done in [Han+08]) will become an important issue when moving in that direction.

In general a greater focus should be placed in the future on integrating more approaches
extracting relevant information about the environment (including possible interaction
partners) from the robot’s sensors. This will not only serve to provide more data on
which engagement decisions could be based, but will also become helpful when looking at
higher levels of dialog enhancements, e.g. a better model of multi-party turn-taking.

Integrating this work with the new approach to memory systems developed by Wienke
[Wie10] for the HUMAVIPS project is also a direct goal for future development. The
integrated history mechanism provided by this memory system could e.g. be used in
trying to make decisions not only based on the current state or user intentions but also
based on specific temporal patterns in this information. Its layered approach could also
provide for better mechanism of sensor fusion and the generation of hypotheses, e.g. about
the users and their actions and intentions.

The relatively static nature of the handcrafted rules currently used to implement the
system engagement policy described in section 4.3.4 may likely also become a limiting
factor in modeling more complex interactions at some point in the future. Finding a more
flexible and possibly probabilistic modeling for the selection of engagement actions could
prove a viable direction and could ultimately even lead to more data-driven approaches,

45

including trying to learn the correct behavior from observing interactions between humans
and between human and robotic systems.

From an architectural viewpoint, a better separation of concerns between the engage-
ment subsystem and the rest of the dialog system is desirable to some degree, e.g. by
externalizing the engagement handling to another external component. Technically how-
ever, this endeavor is complicated by the relatively tight integration of some parts of the
engagement subsystem within the genral dialog management, so some critical thought
about the interfaces between these components would be needed for this.

Regarding the differentiation of different layers or levels of understanding presented in
section 2.1, this work has been focused almost completely on the lower levels of these
models. Taking another look at the higher levels, e.g. the general management of dialog
goals and the interaction patterns themselves, and thinking about how their current real-
izations could benefit from the improvements now present in the lower layers could also
lead to further enhancements in this approach to dialog modeling.

The work done for this thesis succeeds in integrating the concept of engagement into an
existing, usable system for modeling human-robot interactions, expanding its capabilities
to model complex interactional situations. For this, it borrows perhaps most heavily from
the work of Bohus and Horvitz, adapting their concepts to the needs and requirements
of a new environment. In general I hope that the approach taken in this thesis will
provide a fruitful foundation for future work on multi-party human-robot interactions and
I look forward to applying it to situations beyond the proof-of-concept scenario realized
for this thesis. I am also especially looking forward to the challenges and insights the
modeling of different situations and the integration of various perceptual approaches in
the HUMAVIPS project will provide when this system is used in trying to further that
projects goals of fluid robot-to-group interaction.

46

A. Speech Recognition Grammar

This appendix lists the grammar the speech recognizer was configured to use in the sce-
nario described in the chapters 3 and 4. This listing is derived from the original configu-
ration of the speech recognizer by just slightly changing it to a more readable EBNF-like
form. Words in quotation marks are terminal symbols (recognized words, in this case)
and words without quotations denote non-terminal categories. The vertical bar represents
alternatives in the grammar and the comma denotes concatenation of multiple symbols.

S = Greet ing | In t roduc t i on | PersonQuery | Answer | GoodBye ;

Greet ing = RobotName , ” h e l l o ” | ” h e l l o ” , RobotName
| ” h i ” , RobotName | ” h e l l o ” ;

In t roduc t i on = RobotName , ” i ” , ”am” , HumanName
| ” i ” , ”am” , HumanName
| RobotName , ”my” , ”name” , ” i s ” , HumanName
| ”my” , ”name” , ” i s ” , HumanName ;

Answer = RobotName , Posit iveAnswer | Posit iveAnswer
| RobotName , NegativeAnswer | NegativeAnswer ;

GoodBye = ”good ” , ”bye ” , RobotName | ”good ” , ”bye” ;

Pos it iveAnswer = ” yes ” , ” i ” , ”do” | ” yes ” , ”we” , ”do”
| ” yes ” , ” i ” , ”know” , ”him” | ” yes ” , ” i ” , ”know” , ” her ” ;

NegativeAnswer = ”no ” , ” i ” , ”don ’ t ” | ”no ” , ”we” , ”don ’ t ”
| ”no ” , ”we” , ”do ” , ” not”
| ”no ” , ” i ” , ”don ’ t ” , ”know” , ” her ”
| ”no ” , ” i ” , ”don ’ t ” , ”know” , ”him” ;

PersonQuery = RobotName , PersonQuestion | PersonQuestion ;

PersonQuestion = ”have ” , ”you ” , ” seen ” , HumanName, ” today”
| ” did ” , ”you ” , ” s ee ” , HumanName, ” today” ;

47

HumanName = ”David” | ”Johannes” | ” J u l i a ”
| ” Sebast ian ” | ” Br i t t a ” ;

RobotName = ”nao” | ” robot ” | ” p ipe r ” ;

48

B. Recorded Interaction with the

Engagement Subsystem

This appendix provides the complete and detailed log of the recorded interaction described
in section 4.4. Table B.1 does not include the graphical depiction of the current dialog state
(i.e. the open interactions and the engaged users), but instead the changes in this state
are part of the log itself. The current state is repeatedly included in the table everytime it
has changed in the interaction. The rules that are triggered inside the engagement control
policy use the numbering introduced in section 4.3.4. The times shown are in the form
minutes:seconds,milliseconds.

Time Action

3:27,325 The dialog currently has 0 open interactions.

3:55,701 The dialog currently knows about 1 users. (User 0 has intention=0.0)

4:01,557 The dialog currently knows about 1 users. (User 0 has intention=1.0)

4:13,412 Speech input received: ’hello nao’

4:13,413 Speech input matched to user 0: ’hello nao’

4:13,521 Rule A1 triggered by speech input ’hello nao’.

4:13,553 The dialog currently has 1 open interactions.

4:13,553 Interaction 1 is active and has 0 engaged users and 0 active patterns.

4:13,593 The dialog currently has 1 open interactions.

4:13,593 Interaction 1 is active and has 1 engaged users and 0 active patterns.

4:13,594 User 0 is engaged in interaction 1

4:14,126 Speech output: ’Hi, nice to meet you!’

4:14,147 The dialog currently has 1 open interactions.

4:14,147 Interaction 1 is active and has 1 engaged users and 0 active patterns.

4:14,147 User 0 is engaged in interaction 1

4:14,970 Rule B2 triggered.

4:15,774 Speech output: ’It seems like i do not know your name. Who are you?’

4:15,792 The dialog currently has 1 open interactions.

4:15,792 Interaction 1 is active and has 1 engaged users and 1 active patterns.

4:15,792 User 0 is engaged in interaction 1

49

Time Action
4:15,792 Pattern ’NameQuery’ of type ’RobotSimpleInformationRequest’ is active

in interaction 1

4:30,001 Speech input received: ’i am david’

4:30,002 Speech input matched to user 0: ’i am david’

4:30,032 Rule A3 triggered by speech input ’i am david’.

4:30,525 Speech output: ’OK, David, i’ll try to remember your name.’

4:30,551 The dialog currently has 1 open interactions.

4:30,552 Interaction 1 is active and has 1 engaged users and 0 active patterns.

4:30,552 User 0 is engaged in interaction 1

4:42,664 The dialog currently knows about 2 users. (User 0 has intention=1.0,
User 1 has intention=0.0)

4:51,564 The dialog currently knows about 2 users. (User 0 has intention=1.0,
User 1 has intention=1.0)

4:52,113 Rule B1 triggered.

4:52,138 The dialog currently has 2 open interactions.

4:52,139 Interaction 2 is active and has 0 engaged users and 0 active patterns.

4:52,139 Interaction 1 is suspended and has 1 engaged users and 0 active patterns.

4:52,139 User 0 is engaged in interaction 1

4:52,157 The dialog currently has 2 open interactions.

4:52,157 Interaction 2 is active and has 1 engaged users and 0 active patterns.

4:52,157 User 1 is engaged in interaction 2

4:52,157 Interaction 1 is suspended and has 1 engaged users and 0 active patterns.

4:52,158 User 0 is engaged in interaction 1

4:53,292 Speech output: ’Hello, do you already know each other?’

4:53,319 The dialog currently has 2 open interactions.

4:53,320 Interaction 2 is active and has 1 engaged users and 1 active patterns.

4:53,320 User 1 is engaged in interaction 2

4:53,320 Pattern ’EngageUser’ of type ’RobotSimpleInformationRequest’ is active
in interaction 2

4:53,320 Interaction 1 is suspended and has 1 engaged users and 0 active patterns.

4:53,320 User 0 is engaged in interaction 1

5:13,880 Speech input received: ’no we do not’

5:13,881 Speech input matched to user 1: ’no we do not’

5:13,887 Rule A3 triggered by speech input ’no we do not’.

5:14,009 The dialog currently has 1 open interactions.

5:14,009 Interaction 1 is active and has 1 engaged users and 0 active patterns.

5:14,009 User 0 is engaged in interaction 1

50

Time Action
5:14,025 Rule B2 triggered.

5:14,041 The dialog currently has 1 open interactions.

5:14,041 Interaction 1 is active and has 2 engaged users and 0 active patterns.

5:14,041 User 0 is engaged in interaction 1

5:14,042 User 1 is engaged in interaction 1

5:14,661 Speech output: ’OK’

5:14,693 The dialog currently has 1 open interactions.

5:14,693 Interaction 1 is active and has 2 engaged users and 0 active patterns.

5:14,693 User 0 is engaged in interaction 1

5:14,693 User 1 is engaged in interaction 1

5:15,342 Speech output: ’It seems like i do not know your name. Who are you?’

5:15,422 The dialog currently has 1 open interactions.

5:15,422 Interaction 1 is active and has 2 engaged users and 1 active patterns.

5:15,422 User 0 is engaged in interaction 1

5:15,422 User 1 is engaged in interaction 1

5:15,422 Pattern ’NameQuery’ of type ’RobotSimpleInformationRequest’ is active
in interaction 1

5:35,930 Speech input received: ’my name is sebastian’

5:35,931 Speech input matched to user 1: ’my name is sebastian’

5:35,938 Rule A3 triggered by speech input ’my name is sebastian’.

5:36,468 Speech output: ’OK, Sebastian, i’ll try to remember your name.’

5:36,489 The dialog currently has 1 open interactions.

5:36,489 Interaction 1 is active and has 2 engaged users and 0 active patterns.

5:36,489 User 0 is engaged in interaction 1

5:36,489 User 1 is engaged in interaction 1

5:37,002 Rule B3 triggered.

5:37,974 Speech output: ’Then lets introduce you two. David this is Sebastian,
Sebastian this is David.’

5:38,013 The dialog currently has 1 open interactions.

5:38,013 Interaction 1 is active and has 2 engaged users and 0 active patterns.

5:38,013 User 0 is engaged in interaction 1

5:38,014 User 1 is engaged in interaction 1

5:56,875 The dialog currently knows about 2 users. (User 0 has intention=1.0,
User 1 has intention=0.0)

6:12,422 Speech input received: ’good bye’

6:12,423 Speech input matched to user 0: ’good bye’

6:12,508 Rule A2 triggered by speech input ’good bye’.

51

Time Action
6:12,543 The dialog currently has 1 open interactions.

6:12,543 Interaction 1 is active and has 1 engaged users and 0 active patterns.

6:12,543 User 1 is engaged in interaction 1

6:12,654 The dialog currently has 1 open interactions.

6:12,654 Interaction 1 is active and has 0 engaged users and 0 active patterns.

6:12,682 The dialog currently has 0 open interactions.

6:13,195 Speech output: ’Good bye, have a nice day!’

6:13,233 The dialog currently has 0 open interactions.

6:20,386 The dialog currently knows about 2 users. (User 0 has intention=0.0,
User 1 has intention=0.0)

6:24,836 The dialog currently knows about 1 users. (User 0 has intention=0.0)

6:27,939 The dialog currently knows about 0 users.

Table B.1.: Simulated interaction test run.

52

Bibliography

[Ald10] Aldebaran Robotics. Nao Academics DataSheet. 2010. url: http://www.

aldebaran-robotics.com/en/node/1166 (visited on 10/15/2010).

[Beu+08] Niklas Beuter et al. “Where is this? - gesture based multimodal interaction
with an anthropomorphic robot”. In: Humanoids 2008. International Confer-
ence on Humanoid Robots. Daejeon, ROK: IEEE-RAS, 2008, pp. 585–591.

[BH09a] Dan Bohus and Eric Horvitz. “Models for Multiparty Engagement in Open-
World Dialog”. In: Proceedings of the SIGDIAL 2009 Conference. London,
UK: Association for Computational Linguistics, Sept. 2009, pp. 225–234.

[BH09b] Dan Bohus and Eric Horvitz. “Open-World Dialog: Challenges, Directions,
and Prototype”. In: Proceedings of IJCAI2009 Workshop on Knowledge and
Reasoning in Practical Dialogue Systems. Pasadena, 2009.

[BH95] Susan E. Brennan and Eric A. Hulteen. “Interaction and feedback in a spoken
language system: a theoretical framework”. In: Knowledge-Based Systems 8.2-
3 (1995), pp. 143–151.

[CS87] Herbert H. Clark and Edward F. Schaefer. “Collaborating on contributions
to conversations”. In: Language and cognitive processes 2.1 (1987), pp. 19–41.

[CS89] Herbert H. Clark and Edward F. Schaefer. “Contributing to discourse”. In:
Cognitive Science 13.2 (1989), pp. 259–294.

[DFK10] DFKI–German Research Center for Artifical Intelligence. The MARY Text-to-
Speech System. 2010. url: http://mary.dfki.de/ (visited on 10/15/2010).

[Fin99] G. A. Fink. “Developing HMM-based Recognizers with ESMERALDA”.
In: Lecture Notes in Artificial Intelligence. Ed. by Václav Matousek et al.
Vol. 1692. Berlin and Heidelberg: Springer, 1999, pp. 229–234.

[Han+08] Marc Hanheide et al. “Who am I talking with? A face memory for social
robots”. In: 2008 IEEE International Conference on Robotics and Automa-
tion. Pasadena: IEEE, May 2008, pp. 3660–3665.

[Har87] D. Harel. “Statecharts: A visual formalism for complex systems”. In: Science
of computer programming 8.3 (1987), pp. 231–274.

[HUM09] HUMAVIPS Project. Grant Agreement Annex 1 - Description of Work. Sept.
2009.

53

http://www.aldebaran-robotics.com/en/node/1166
http://www.aldebaran-robotics.com/en/node/1166
http://mary.dfki.de/

[KH09] Iwan de Kok and Dirk Heylen. “Multimodal End-of-Turn Prediction in Multi-
Party Meetings”. In: ICMI-MLMI ’09 Proceedings. Cambridge, MA, USA:
ACM Press, 2009, pp. 91–98.

[Lan+03] S. Lang et al. “Providing the Basis for Human-Robot-Interaction: A Multi-
Modal Attention System for a Mobile Robot”. In: Proc. Int. Conf. on Multi-
modal Interfaces. ACM. Vancouver, Canada: ACM, Nov. 2003, pp. 28–35.

[Lem+01] Oliver Lemon et al. “The WITAS multi-modal dialogue system I”. In: Seventh
European Conference on Speech Communication and Technology. Aalborg,
Denmark, 2001, pp. 4–7.

[Lüt+09] Ingo Lütkebohle et al. “The Curious Robot - Structuring Interactive Robot
Learning”. In: International Conference on Robotics and Automation. IEEE.
Kobe, Japan: IEEE, May 2009.

[LW07] Shuyin Li and Britta Wrede. “Why and how to model multi-modal interac-
tion for a mobile robot companion”. In: Proc AAAI Spring Symposium on
Interaction Challenges for Intelligent Assistants. Stanford, 2007.

[Pel+09] Julia Peltason et al. “Mixed-initiative in human augmented mapping”. In:
2009 IEEE International Conference on Robotics and Automation. Kobe,
Japan: IEEE, May 2009, pp. 2146–2153.

[Pet+05] Christopher Peters et al. “A Model of Attention and Interest Using Gaze
Behavior”. In: Intelligent Virtual Agents. Ed. by Themis Panayiotopoulos et
al. Vol. 3661. Lecture Notes in Computer Science. Berlin and Heidelberg:
Springer, 2005, pp. 229–240.

[PH00] Tim Paek and Eric Horvitz. “Conversation as Action Under Uncertainty”.
In: UAI ’00: Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2000, pp. 455–464.

[PW10] Julia Peltason and Britta Wrede. “Modeling human-robot interaction based on
generic interaction patterns”. In: AAAI Fall Symposium: Dialog with Robots.
Arlington, VA, USA, 2010.

[Sid+04] Candace L. Sidner et al. “Where to look: a study of human-robot engage-
ment”. In: Proceedings of the 9th International Conference on Intelligent User
Interfaces. Funchal, Madeira, Portugal: ACM Press, 2004, pp. 78–84.

[Spr09] Spread Concepts LLC. The Spread Toolkit. 2009. url: http://www.spread.
org/ (visited on 10/14/2010).

[TR02] David Traum and Jeff Rickel. “Embodied agents for multi-party dialogue in
immersive virtual worlds”. In: Proceedings of the first international joint con-
ference on Autonomous agents and multiagent systems part 2. Bologna, Italy:
ACM, 2002, pp. 27–33.

54

http://www.spread.org/
http://www.spread.org/

[Wie10] Johannes Wienke. “A Spatiotemporal Working Memory for Humanoid
Robots”. Master’s Thesis. Bielefeld University, 2010.

[Wre+04] Sebastian Wrede et al. “An XML Based Framework for Cognitive Vision Ar-
chitectures”. In: Proc. Int. Conf. on Pattern Recognition. Cambridge, UK,
2004, pp. 757–760.

55

List of Figures

2.1. Grounding strategies in Quartet. 7
2.2. Competencies for open-world dialog. 9
2.3. Engagement state transitions. 11
2.4. Examples of interaction patterns. 16
2.5. The life-cycle of tasks. 17

3.1. The robot Nao from Aldebaran Robotics. 20
3.2. Two persons interacting with Nao. 21

4.1. The dialog state. 26
4.2. Architecture of the engagement system. 27
4.3. The engagement process. 32
4.4. Components of the scenario architecture. 33
4.5. The graphical simulation user interface. 38
4.6. Matching speech and speakers. 39

57

Erklärung

Hiermit versichere ich, die vorliegende Masterarbeit selbstständig angefertigt und keine
weiteren als die angegebenen Hilfsmittel und Quellen verwendet zu haben.

Bielefeld, im November 2010
David Klotz

59

	Abstract
	Introduction
	Motivation and Goals
	Overview

	Related Work
	Levels of Understanding
	Communication as a Collaborative Effort
	Usage in Human-Machine Dialog Systems

	Engagement in Communication
	Definitions of Engagement
	Situated Multiparty Engagement

	The PaMini Dialog System
	Interaction Patterns
	The Task State Protocol
	Interaction Management in PaMini

	Scenario and Environment
	The Humanoid Robot Nao
	The HUMAVIPS Project
	A Scenario for Multi-Party Interactions
	An Example Dialog

	The Engagement Subsystem
	Interaction Management
	Engagement Decisions
	Engagement State, Actions and Intentions
	The Engagement Control Policy
	Engagement Tasks
	The Engagment Process in Action

	Scenario Configuration
	Connecting Nao and PaMini
	Speech Input Grammar
	Interaction Patterns
	Scenario-Specific Engagement Control Policy
	Interfaces with the Real World

	Analyzing Interactions
	Data Collection
	Results

	Conclusion and Outlook
	Speech Recognition Grammar
	Recorded Interaction with the Engagement Subsystem
	Bibliography
	List of Figures

