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ABSTRACT

This paper addresses the recognition of people’s visual focus
of attention (VFOA), the discrete version of gaze indicating
who is looking at whom or what. In absence of high def-
inition images, we rely on people’s head pose to recognize
the VFOA. To the contrary of most previous works that
assumed a fixed mapping between head pose directions and
gaze target directions, we investigate novel gaze models doc-
umented in psychovision that produce a dynamic (temporal)
mapping between them. This mapping accounts for two im-
portant factors affecting the head and gaze relationship: the
shoulder orientation defining the gaze midline of a person
varies over time; and gaze shifts from frontal to the side in-
volve different head rotations than the reverse. Evaluated
on a public dataset and on data recorded with the humanoid
robot Nao, the method exhibit better adaptivity often pro-
ducing better performance than state-of-the-art approach.
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1. INTRODUCTION

As a good indicator of people’s interest and due to its ma-
jor role in non-verbal communication, VFOA is an key cue

for human interaction analysis and in Human-Computer/Robot

interactions (HCI, HRI) design [3].

Sensor based methodologies can be used to estimate peo-
ple gaze. They are accurate but quite invasive and restric-
tive. Computer vision techniques relying on perceived infor-
mation from gaze or head has also made good progresses, but
still usually restrict subject mobility considering the need for
cameras with narrow field-of-views for looking at the eyes.

As an alternative, researchers have considered the use of
head pose as a clue for gaze [7, 9, 1, 10, 4]. Head poses, how-
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ever, are ambiguous: in realistic scenarios, the same head
pose can be used to look at different targets, depending on
the situation. To address this issue, researchers have pro-
posed to exploit other cues: speaker information or conver-
stational regimes [7] that can be exended with contextual
knowledge from the group activity [1].

While context is important, a central issue is how to set
the expected head pose of an observer that looks at a given
target? in other words, how to define a mapping from the
gaze target direction to the corresponding head pose. This
is essential to set the parameters of recognizers like Hidden
Markov Models (HMM) and decode the sequence of VFOA
targets given the head pose sequence. Methods often rely
on manual setting, potentially followed by adaptation [7].

One of the few work addressing this problem is [1]. Ex-
ploiting results on human gazing behavior and head-eye dy-
namics involved in saccadic gaze shifts [6, 5], they introduced
a linear gaze model relating the head pose, gaze direction,
and head reference (coined gaze midline in [5]) as illustrated
in Fig. 1(a). While the method worked when applied to
meetings, it suffers from two drawbacks: the reference di-
rection, which corresponds to the direction perpendicular
to the shoulder, was assumed to be fixed and set according
to the setup. This approach might not be feasible in more
dynamic settings, like in HRI with multiple people where
the robot is not always the main focus, and more gener-
ally in scenarios involving people free to move and re-orient
themselves, as illustrated in Fig. 2. The second drawback,
pointed out in several psychovisual works, is that the map-
ping not only depends on the the gaze direction and midline
reference, but also on the head or gaze direction before the
shift, resulting in different head poses for looking at different
targets even for the same head reference direction.

In this paper, we investigate both problems. In absence of
shoulder orientation measures, we introduce an implicit esti-
mation of the midline direction, and propose two approaches
inspired by [5] to improve gaze-to-head mapping and gaze
shift models. Experiments on meeting benchmark data and
on data recorded by a robot (Nao) shows the benefit of sev-
eral modeling components. To our knowledge, this has not
been done before. The work in [9] is the closest to ours. In
a dynamic scenario authors proposes to use a discrete set of
head-to-gaze ratios and estimate the most likely based on
gaze prediction and differential head pose indicators. How-
ever, the reference direction setting was not addressed, and
their approach is quite different from our proposition that
compensates the models’ limitation relying on models in-
spired from human behaviors [5].
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Figure 1: Gaze models. (a) Geometrical model. The
person is assumed to be looking at the reference di-
rection, or midline (grossly, the body orientation).
Then, looking at a gaze target is accomplished by
rotating both the eyes and head, with the head part
being a fixed fraction of the full gaze rotation. (b)
Midline effect [5]. The interval of head positions
[u", 1 ] corresponding to the target at position .
When the gaze is moved to p from initial position
H?", the head is moved to ! according the geomet-
rical model. When the gaze shift is centripetal from
H?" to u, the head is moved to u. For initial head
positions between ;! and p, an eye-only saccade to
u is made (the head position remains the same).

2. VFOA RECOGNITION MODEL
2.1 VFOA recognition using a HMM model

In this model, the distribution of head poses associated
to a given VFOA target is represented by a distribution
(a Gaussian) with different parameters, whereas transitions
between VFOA targets is represented by a transition matrix
A. More specifically, let H; and F} indicate head pose and
focus values at time ¢, and p" € (R*)¥ and Tp € (RH)¥
denote the means and covariances of each of the K Gaussians
associated with the targets. The HMM equations can be
written as follows:

P(H|F; = n) = N(Hi|u" (n), S (n)) (1)
P(Fy =m|F—1 =n) = Anm (2)

Parameter setting. This is a major issue. Following previ-
ous work, the covariance of each target can be set according
to its size and head pose estimation variability. In absence
of other prior, the transition matrix A can also reasonably
be set to satisfy our expectation of preserving the VFOA
continuity in the sequence.

However, although they play the most important role in
the model, setting the means of the Gaussians p” is not
possible in an easy way. Using training data is not really
an option, since VFOA annotation is difficult, time consum-
ing, and data needs to be gathered and annotated for each
configuration of the observer, targets and settings. This is
especially problematic if people are free to move.

A solution to the above difficulty is to use gaze models
derived from gazing behavior [6, 5]. Accordingly, gazing at
a target is accomplished by rotating both the eyes (‘eye-in-
head’ rotation) and the head as illustrated in Fig. 1. More
precisely, as a first approximation, the means of the Gaus-
sians can be set as a fixed linear combination of the gaze
and head reference directions. For a gaze target n, we have:

W) = R=a (u(n) — R) = p"(n) = a p(n) + (1 - 1
3

where R € R? denotes the reference direction and p € (R?)*

the target directions. The coefficient « is usually set between
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Figure 2: (a) Left: during frames 1700-2200, Nao is
the main speaker, participants tend to look straight
at him. Right: afterwards (quiz part) participants
alternatively look at the robot and the second per-
son (amongst others). Their reference direction is
thus different, and so are the pose for looking at
Nao. (b) head pose (pan angle) of the person on the
right in image (a). The ground truth VFOA is dis-
played in the top bar, with color codes below. The
head pose data is displayed in black when the recog-
nition is correct, and in the color of the wrongly
recognized VFOA otherwise. Dashed lines indicate
the pan pose mean for looking at each target for the
baseline (left), or the proposed model (right). In
this later case, the black line shows the head refer-
ence. With the dynamic reference, head poses for
looking at each of the target are better predicted,
like for looking at Nao (despite its high variability:
pan near 0 at frame 2150, near -17 at frame 2550).

0.5 and 0.7 for pan and between 0.3 and 0.5 for the tilt angle.
Eq. 3 can be used to set the Gaussian mean corresponding
to target m in our HMM model. Our baseline will consist
of the above model with the reference R set to a constant
value as done in most previous works.

2.2 Model G1: Dynamical Head References
and the Midline Effect

Reference setting. Setting the Gaussians means using the
above model requires the knowledge of R and of the target
directions. Eq. 3 shows the importance of the reference:
using a wrong value for R shifts mean values for all targets
u™(n) simultaneously, which can have dramatic effects.

This importance of knowing the head reference is also il-
lustrated in Fig. 2. Unless the reference direction (shoulder
orientation) is constrained by the setting (eg when people
are seated) using a constant reference can be problematic.
General interactions will result in more variations and shifts
in the reference as people are free to move, motivating the
need for setting the reference dynamically.

Midline effect. As documented in [5], and illustrated in
Fig. 1, the gaze model defined by Eq. 3 is only valid if the
gaze shift goes from the reference to a given target. Indeed,
in [5] shows that how much of a gaze shift is accomplished
by the head or by the eye depends on the position of the
head (which is not aligned with the reference in general) at
the start of the gaze, and whether the shift goes through
the reference or not, hence the term 'midline effect’ used in
[5]'. From the analysis of the psychovision literature, the

n [5], the reference is called midline.
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Figure 3: Graphical models. (a) Model G1. The
head reference direction and the mean head pose of
the Gaussians are now variables over time, and the
recent head pose can be exploited. (b) model G2.
The mean head pose for looking at a target depends
on the gaze target at the previous time step.

authors derived a gaze model which is illustrated in Fig. 1b,
and that we have investigated in our research.

First model G1. Our goal is to derive a gaze model that
accounts both for a dynamically estimated reference, and
for the midline effect. To address the first point, we relied
on the following intuition. A person tends to orient himself
towards the set of gaze targets he/she spends time looking
at. Such a body position makes it more comfortable and less
energy consuming to rotate his head towards different gaze
targets. As a corollary, this means that his average head
pose over time is a good indicator of his reference direction,
and can be used as reference estimate. Therefore we set the
reference value at frame R) as the head pose average over a

previous time window:
t

R = Y Hi/uw
i=t—w
To investigate the midline effect, we need to know what
was the value of the head pose before the gaze shift occurs.
To this end, we introduced the variable HP" defining the
previous head pose and used as estimate of this variable the
average of the head poses computed over a window of size

w? separated by a gap 67 from the current instant:
t—oP

- 1
i=t—wP — &P

Finally, the G1 gaze model was implemented by setting the

head pose mean ,u?gl(n) of the n™ target at time ¢ using

the rules (for p(n) > 0 and omitting (n) for simplicity):
pe' = ap+ (1 - )Ry (5)

if HP™ < p then pl9' = ppt (6)

otherwise "' = Min (,u, it 4 ap (HP™ — M?l)) (7)

The above equations can be adapted for u(n) < 0. The
factor ay indicates how much we take into account the pre-
vious head pose in the estimate. When ag = 0, we always
have p?g b= p . which means that the head pose means are
set using the standard geometric model, but using a dynam-
ically set reference. When ay = 1, the implemented model

is exactly the one proposed by [5].

2.3 Model G2: implementing gaze shifts

When implementing the midline effect, the previous model
has one drawback: at each time step, a gaze shift is assumed.
In other words, even if the person is focusing on target i, the
previous head pose HF", estimated through recursion over a
short window, evolves and introduces an evolution of what
the head pose mean of the target ¢ itself should be.

Figure 4: Settings. Left. Meeting, with VFOA tar-
gets for the person on the right. Middle. Nao D1.
Right. Nao D2, from vernissage recordings, with the
VFOA targets for one of the 2 participants.

As alternative to the G1 model, we define the gaze sit-
uation prior to the gaze shift by the gaze at the previous
instant. In this case, the head pose mean to look at target
n at time ¢, given the previous focus F;_1, is given by:

pi%(n) = arp(n) + asp(Fr1) + (1 — a1 — a2) Ry (8)
Thus, in absence of gaze shift (F;—1 = n), the head pose
mean is simply given by the geometrical model with a =
a1+ a2, while in case of a gaze shift Fi_; # n, the head pose
is not only affected by the reference and new gaze direction
w(n), but also by the previous gaze (the head should be
closer to the previous gaze than what would be predicted by
the geometrical model).

Fig. 3(b) shows the G2 graphical model. The link between
the hidden states F;_1 and p? renders the inference more
complex than in a standard HMM. In practice, we conducted
the inference sequentially, using the estimated focus at time
t — 1 to estimate the optimal focus at time t.

3. EXPERIMENTAL RESULTS.

3.1 Data Sets and Experimental Protocol

We used three datasets for experiments, with setup illus-
trated in Fig. 4. The Meeting dataset was taken from
[2]. It has 8 meeting sessions (1 hour of data), and provides
the ground truth head poses for the two persons in front of
the camera. Each person has 5 possible gaze targets: the 3
other persons (the one on his side, two on the other table
side), the slide screen and the table.

The two other datasets were recorded with the humanoid
robot Nao and in both cases, head poses were extracted
with an automatic algorithm [8]. In the first dataset, D1,
two participants were seating in front of Nao and discussing
about Nao’s features. At one point, one of the person leaves
and a third person comes in. The session lasts 22 minutes
(min). Each person has 3 visual targets: the other partic-
ipant, Nao and a booklet which they refer to during the
recording. The 3rd dataset D2, involves two participants
standing in front of Nao and free to walk around and look at
different objects. In a first part, Nao explains three paint-
ings to them; in a second part, Nao makes them a quizz
where the participants can discuss before giving their an-
swer. VFOA annotations are available for 3 recordings, for
a total of around 22:30min per side, ie 45min in total. As
shown in Fig.4, the VFOA labels were Robot (NAO), Part-
ner, Paintingl, Painting2, Painting3, and in addition, Oth-
ers, that we used when people were looking elsewhere.
Performance Measure: We uses the Frame based Recog-
nition Rate (FRR), that is, the percentage of frames where
the VFOA has been correctly recognized.

Algorithms: For each datasets, 3 models were tested. The
baseline is the HMM model with a fixed reference value. G1
uses the head pose average RY as reference, and sets the



Table 1: Performance on the Meeting data

Person Training | Baseline | Model G1 | Model G2
Person on left | same seat 64.7 65.7 68.4
Person on left | other seat 64.5 66.7 69.3

Person on right | same seat 57.0 58.7 58.5
Person on right | other seat 43.9 59.0 57.8

head pose using the new formula to account for the midline
effect. G2, in addition to using R?, implements gaze shifts
by using the previous gaze.

3.2 Parameter Setting

Meeting Data. We set the gaze target directions from the
physical setting and the Gaussians variances as in [2]. The
reference direction for the baseline was set as the middle
between VFOA gaze target as in [2]. The remaining pa-
rameters were adjusted by cross-validation for each model,
by considering two different set-ups: cross validation using
training data either from the same seat, or from the other
seat. The second case is useful to see whether our model is
sensitive to a specific setting or it is more general.

Nao Data. For D1 and D2 the gaze directions were
defined from the geometrical setting. The reference direc-
tion for the baseline was set as looking at Nao, which is a
reasonable choice in an HRI scenario. Standard deviations
of Gaussian were set to 10 and 8 for pan and tilt. Other
parameters were adjusted by leave-one-out cross validation
on the three participants in D1, and on the 6 sequences (2
participants in 3 recordings) for D2.

3.3 Results

Meeting data. Table 1 shows the results of the three mod-
els. The first model outperforms the baseline, particularly in
more mismatched conditions, when parameters are learned
from the other seat, exhibiting therefore a better adaptation
capacity. The main (mismatched) parameters leading to the
degradation is the parameter o of the gaze model (see Eq.
3) that directly impact the prediction of the head poses: for
PL, the optimal parameters is around 0.8, whereas for PR,
it is around 0.5. The different values of apqn obtained from
two different seats could be due to the fixed choice of the ref-
erence which leads to different values for these two settings.
This effect does not exist for the first model G1 and the
chosen parameters through cross-validation are completely
consistent with an optimal value for both seats around 0.7
for apan. On the other hand, we can see that G2 performs
better than the G1 in most cases. We observed that the im-
provement happened mainly during consecutive gaze shifts
involving stable head pose changes, and was also observed
in the Nao case.

Nao Data.For D1 the results are summarized in Table 2.
Despite the quite different setting, the conclusions are simi-
lar to the meeting data. However, model G1 outperforms the
baseline with a larger difference. This is particularly true for
the first person, who, being more dynamic during the inter-
action, shifted her body orientation towards both the robot
and the other participants, wheras the two other people re-
mained more firmly seated in the sofa and oriented towards
Nao, which better matches the looking at Nao assumption
of the baseline. Also, model G2 performs better than model
G1 for all of the sequences. Table 3 contains the results for
D2. The same conclusion than with D1 can be drawn: G1
outperforms the baseline with a noticable difference and G2
is performing slightly better than G1.

Table 2: Performance First Nao Data (D1)

Person | Baseline | Model G1 | Model G2
Person1 49.78 64.36 65.32
Person2 91.52 93.73 95.45
Person3 67.83 66.12 68.01
Table 3: Performance on Second Nao Data (D2)
Person Baseline | Model G1 | Model G2
Person on right 54.4 59.0 59.2
Person on left 55.9 59.1 60.9

When looking at the parameters selected by cross-validation
on the 3 datasets for model G1, most of the time the value of
am was 0: the main improvement with G1 was thus due to
the use of an adaptive reference, rather than to the midline
effect illustrated in Fig. 1b.

4. CONCLUSION.

We investigated two drawbacks of the previous work for
mapping vfoa targets to head pose values. To overcome
the problem with the fix reference (midline) we provided an
implicit estimate of it. To account for the dependency of the
gaze-to-head mapping to the previous head or gaze before
the shift we proposed two approaches inspired from human
behaviors [5]. Experiments on meeting benchmark data and
on two datasets recorded by a humanoid robot shows the
benefit of several modeling components.

As future work, using image-based gaze directions [4] would
be beneficial, and can be combined with our approach. How-
ever, this is true only if they can be extracted sufficiently
reliably from the available images.
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